Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
FinancialSupport
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -112,50 +112,49 @@ def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
|
|
112 |
return filtered_df
|
113 |
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
def filter_models(
|
116 |
-
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
117 |
) -> pd.DataFrame:
|
118 |
# Show all models
|
119 |
if show_deleted:
|
120 |
-
filtered_df = df
|
121 |
else: # Show only still on the hub models
|
122 |
-
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
123 |
|
124 |
type_emoji = [t[0] for t in type_query]
|
125 |
-
filtered_df = filtered_df
|
126 |
-
filtered_df = filtered_df
|
127 |
|
128 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
129 |
-
params_column = pd.to_numeric(
|
130 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
131 |
-
filtered_df = filtered_df
|
132 |
-
|
133 |
-
return filtered_df
|
134 |
-
|
135 |
-
# def filter_models(
|
136 |
-
# df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool, italian_only: bool
|
137 |
-
# ) -> pd.DataFrame:
|
138 |
-
# # Show all models
|
139 |
-
# if show_deleted:
|
140 |
-
# filtered_df = df.copy()
|
141 |
-
# else: # Show only still on the hub models
|
142 |
-
# filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True].copy()
|
143 |
|
144 |
-
|
|
|
145 |
|
146 |
-
|
147 |
-
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
148 |
-
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
149 |
-
|
150 |
-
# numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
151 |
-
# params_column = pd.to_numeric(filtered_df[AutoEvalColumn.params.name], errors="coerce")
|
152 |
-
# mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
153 |
-
# filtered_df = filtered_df[mask]
|
154 |
-
|
155 |
-
# if italian_only:
|
156 |
-
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.author.name] == "🇮🇹"]
|
157 |
|
158 |
-
# return filtered_df
|
159 |
|
160 |
def get_data_totale():
|
161 |
dataset = pd.read_csv("mmlu_pro_it.csv", sep=',')
|
|
|
112 |
return filtered_df
|
113 |
|
114 |
|
115 |
+
# def filter_models(
|
116 |
+
# df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
117 |
+
# ) -> pd.DataFrame:
|
118 |
+
# # Show all models
|
119 |
+
# if show_deleted:
|
120 |
+
# filtered_df = df
|
121 |
+
# else: # Show only still on the hub models
|
122 |
+
# filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
123 |
+
|
124 |
+
# type_emoji = [t[0] for t in type_query]
|
125 |
+
# filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
126 |
+
# filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
127 |
+
|
128 |
+
# numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
129 |
+
# params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
130 |
+
# mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
131 |
+
# filtered_df = filtered_df.loc[mask]
|
132 |
+
|
133 |
+
# return filtered_df
|
134 |
+
|
135 |
def filter_models(
|
136 |
+
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool, italian_only: bool
|
137 |
) -> pd.DataFrame:
|
138 |
# Show all models
|
139 |
if show_deleted:
|
140 |
+
filtered_df = df.copy()
|
141 |
else: # Show only still on the hub models
|
142 |
+
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True].copy()
|
143 |
|
144 |
type_emoji = [t[0] for t in type_query]
|
145 |
+
filtered_df = filtered_df[filtered_df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
146 |
+
filtered_df = filtered_df[filtered_df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
147 |
|
148 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
149 |
+
params_column = pd.to_numeric(filtered_df[AutoEvalColumn.params.name], errors="coerce")
|
150 |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
151 |
+
filtered_df = filtered_df[mask]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
+
if italian_only:
|
154 |
+
filtered_df = filtered_df[filtered_df[AutoEvalColumn.author.name] == "🇮🇹"]
|
155 |
|
156 |
+
return filtered_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
|
|
158 |
|
159 |
def get_data_totale():
|
160 |
dataset = pd.read_csv("mmlu_pro_it.csv", sep=',')
|