Spaces:
Sleeping
Sleeping
File size: 1,179 Bytes
9a7645a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import gradio as gr
import joblib
import spacy
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.base import BaseEstimator, TransformerMixin
nlp = spacy.load('en_core_web_sm')
tfidf = joblib.load('./tfidf.joblib')
model = joblib.load('./model.joblib')
tags_binarizer = joblib.load('./tags.joblib')
def lemmatize(s: str) -> iter:
# tokenize
doc = nlp(s)
# remove punct and stopwords
tokens = filter(lambda token: not token.is_space and not token.is_punct and not token.is_stop and not token.is_digit, doc)
# lemmatize
return map(lambda token: token.lemma_.lower(), tokens)
def predict(title: str , post: str):
text = title + " " + post
lemmes = np.array([' '.join(list(lemmatize(text)))])
X = tfidf.transform(lemmes)
y_bin = model.predict(X)
y_tags = tags_binarizer.inverse_transform(y_bin)
return y_tags
demo = gr.Interface(
fn=predict,
inputs=[
gr.Textbox(lines=1, placeholder="Title..."),
gr.Textbox(lines=10, placeholder="Post...")],
outputs=gr.Textbox(lines=10))
demo.launch() |