mike23415 commited on
Commit
40c3856
·
verified ·
1 Parent(s): b95ef79

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +129 -0
app.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import uuid
3
+ from flask import Flask, request, jsonify
4
+ from flask_cors import CORS
5
+ from werkzeug.utils import secure_filename
6
+ import torch
7
+ from transformers import DonutProcessor, VisionEncoderDecoderModel
8
+ from PIL import Image
9
+ import cv2
10
+ import numpy as np
11
+
12
+ app = Flask(__name__)
13
+ CORS(app)
14
+
15
+ # Configure upload folder
16
+ UPLOAD_FOLDER = 'uploads'
17
+ ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg', 'pdf', 'tif', 'tiff'}
18
+ app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
19
+ app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max upload
20
+
21
+ # Create uploads directory if it doesn't exist
22
+ os.makedirs(UPLOAD_FOLDER, exist_ok=True)
23
+
24
+ # Load OCR model - Microsoft's Donut model
25
+ processor = DonutProcessor.from_pretrained("microsoft/donut-base")
26
+ model = VisionEncoderDecoderModel.from_pretrained("microsoft/donut-base")
27
+
28
+ # Move model to GPU if available
29
+ device = "cuda" if torch.cuda.is_available() else "cpu"
30
+ model.to(device)
31
+
32
+ def allowed_file(filename):
33
+ return '.' in filename and \
34
+ filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
35
+
36
+ def preprocess_image(image_path):
37
+ # Open image with PIL
38
+ image = Image.open(image_path).convert("RGB")
39
+
40
+ # Basic enhancement for better OCR results
41
+ # Convert to OpenCV format for preprocessing
42
+ img = np.array(image)
43
+ img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
44
+
45
+ # Apply adaptive thresholding to handle varying lighting conditions
46
+ gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
47
+ thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
48
+ cv2.THRESH_BINARY, 11, 2)
49
+
50
+ # Convert back to PIL
51
+ enhanced_image = Image.fromarray(cv2.cvtColor(thresh, cv2.COLOR_GRAY2RGB))
52
+ return enhanced_image
53
+
54
+ def perform_ocr(image_path):
55
+ # Preprocess the image
56
+ image = preprocess_image(image_path)
57
+
58
+ # Prepare image for the model
59
+ pixel_values = processor(image, return_tensors="pt").pixel_values.to(device)
60
+
61
+ # Generate text
62
+ task_prompt = "<s_ocr>"
63
+ decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids.to(device)
64
+
65
+ outputs = model.generate(
66
+ pixel_values,
67
+ decoder_input_ids=decoder_input_ids,
68
+ max_length=model.decoder.config.max_position_embeddings,
69
+ early_stopping=True,
70
+ pad_token_id=processor.tokenizer.pad_token_id,
71
+ eos_token_id=processor.tokenizer.eos_token_id,
72
+ use_cache=True,
73
+ num_beams=5,
74
+ bad_words_ids=[[processor.tokenizer.unk_token_id]],
75
+ return_dict_in_generate=True,
76
+ )
77
+
78
+ # Decode generated text
79
+ sequence = processor.batch_decode(outputs.sequences)[0]
80
+ sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
81
+ sequence = sequence.replace("<s>", "").replace("</s>", "").replace("<s_ocr>", "").replace("</s_ocr>", "")
82
+ return sequence.strip()
83
+
84
+ @app.route('/ocr', methods=['POST'])
85
+ def ocr():
86
+ # Check if a file was uploaded
87
+ if 'file' not in request.files:
88
+ return jsonify({'error': 'No file part'}), 400
89
+
90
+ file = request.files['file']
91
+
92
+ # Check if filename is empty
93
+ if file.filename == '':
94
+ return jsonify({'error': 'No selected file'}), 400
95
+
96
+ # Check if file type is allowed
97
+ if file and allowed_file(file.filename):
98
+ # Create a unique filename
99
+ filename = str(uuid.uuid4()) + '_' + secure_filename(file.filename)
100
+ file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
101
+
102
+ # Save the file
103
+ file.save(file_path)
104
+
105
+ try:
106
+ # Perform OCR
107
+ extracted_text = perform_ocr(file_path)
108
+
109
+ # Clean up the file if needed
110
+ # os.remove(file_path)
111
+
112
+ return jsonify({
113
+ 'success': True,
114
+ 'text': extracted_text
115
+ })
116
+ except Exception as e:
117
+ return jsonify({
118
+ 'success': False,
119
+ 'error': str(e)
120
+ }), 500
121
+ else:
122
+ return jsonify({'error': 'File type not allowed'}), 400
123
+
124
+ @app.route('/health', methods=['GET'])
125
+ def health_check():
126
+ return jsonify({'status': 'healthy'}), 200
127
+
128
+ if __name__ == '__main__':
129
+ app.run(host='0.0.0.0', port=5000, debug=False