File size: 5,035 Bytes
f1fd41e 7ae54ea 580eaed f1fd41e 7ae54ea 6f93dce 7ae54ea 6f93dce 580eaed f1fd41e 6f93dce d10798f 6f93dce f1fd41e 6f93dce 7ae54ea f1fd41e 0aeef7f f1fd41e 6f93dce f1fd41e 6f93dce f1fd41e 7ae54ea 6f93dce 7ae54ea f1fd41e 7ae54ea f1fd41e 7ae54ea f1fd41e 7ae54ea f1fd41e 7ae54ea 6f93dce f1fd41e 7ae54ea 6f93dce f1fd41e 6f93dce 7ae54ea f1fd41e 6f93dce 7ae54ea 6f93dce f1fd41e 7ae54ea f1fd41e 7ae54ea f1fd41e 7ae54ea f1fd41e 7ae54ea f1fd41e 6f93dce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import os
import time
import json
import numpy as np
from pathlib import Path
from flask import Flask, request, jsonify, Response
from flask_cors import CORS
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
import torch
# Verify numpy version
assert np.__version__.startswith('1.'), f"Invalid numpy version {np.__version__} - must be 1.x series"
# Create cache directory if not exists
cache_dir = Path(os.getenv('TRANSFORMERS_CACHE', '/app/cache'))
cache_dir.mkdir(parents=True, exist_ok=True)
app = Flask(__name__)
CORS(app)
# Model configuration
MODEL_NAME = "deepseek-ai/deepseek-r1-6b-chat"
MAX_NEW_TOKENS = 256
DEVICE = "cpu"
# Initialize model
try:
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
cache_dir=str(cache_dir)
)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
cache_dir=str(cache_dir),
device_map="auto",
torch_dtype=torch.float32,
low_cpu_mem_usage=True)
print("Model loaded successfully!")
except Exception as e:
print(f"Model loading failed: {str(e)}")
model = None
def stream_generator(prompt):
"""Generator function for streaming response with thinking steps"""
# Thinking phases
thinking_steps = [
"π Analyzing your question...",
"π§ Accessing knowledge base...",
"π‘ Formulating response...",
"π Verifying information..."
]
# Stream thinking steps
for step in thinking_steps:
yield json.dumps({"type": "thinking", "content": step}) + '\n'
time.sleep(1.5) # Simulate processing time
# Prepare streaming generation
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)
streamer = TextStreamer(tokenizer, skip_prompt=True)
# Generate response chunks
try:
generated_ids = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS,
streamer=streamer,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id)
# Stream generated text
full_response = ""
for token_ids in generated_ids:
chunk = tokenizer.decode(token_ids, skip_special_tokens=True)
new_content = chunk[len(full_response):]
if new_content.strip():
full_response = chunk
yield json.dumps({
"type": "answer",
"content": new_content
}) + '\n'
except Exception as e:
yield json.dumps({
"type": "error",
"content": f"Generation error: {str(e)}"
}) + '\n'
yield json.dumps({"type": "complete"}) + '\n'
@app.route('/stream_chat', methods=['POST'])
def stream_chat():
if not model:
return jsonify({"error": "Model not loaded"}), 500
data = request.get_json()
prompt = data.get('prompt', '').strip()
if not prompt:
return jsonify({"error": "Empty prompt"}), 400
return Response(
stream_generator(prompt),
mimetype='text/event-stream',
headers={
'Cache-Control': 'no-cache',
'Connection': 'keep-alive'
}
)
@app.route('/chat', methods=['POST'])
def chat():
if not model:
return jsonify({"error": "Model not loaded"}), 500
data = request.get_json()
prompt = data.get('prompt', '').strip()
if not prompt:
return jsonify({"error": "Empty prompt"}), 400
try:
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)
outputs = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response.split("</s>")[0].strip()
return jsonify({"response": response})
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route('/health', methods=['GET'])
def health_check():
status = {
"model_loaded": bool(model),
"device": DEVICE,
"cache_dir": str(cache_dir),
"max_tokens": MAX_NEW_TOKENS,
"memory_usage": f"{torch.cuda.memory_allocated()/1024**2:.2f}MB"
if torch.cuda.is_available() else "CPU"
}
return jsonify(status)
@app.route('/')
def home():
return jsonify({
"service": "DeepSeek Chat API",
"endpoints": {
"POST /chat": "Single-response chat",
"POST /stream_chat": "Streaming chat with thinking steps",
"GET /health": "Service health check"
},
"config": {
"model": MODEL_NAME,
"max_tokens": MAX_NEW_TOKENS,
"cache_location": str(cache_dir)
}
})
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000) |