Thinking / app.py
mike23415's picture
Update app.py
4a9bfbe verified
raw
history blame
8.96 kB
import os
import time
import json
import numpy as np
from pathlib import Path
from flask import Flask, request, jsonify, Response
from flask_cors import CORS
import torch
import gc # For garbage collection
# Create cache directory if not exists
cache_dir = Path(os.getenv('TRANSFORMERS_CACHE', '/app/cache'))
cache_dir.mkdir(parents=True, exist_ok=True)
app = Flask(__name__)
CORS(app) # Allow cross-origin requests
# Model configuration
# Use DeepSeek R1 Distill Qwen 7B model
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
MAX_NEW_TOKENS = 256
DEVICE = "cpu" if not torch.cuda.is_available() else "cuda"
# Initialize model variables
tokenizer = None
model = None
def load_model():
"""Load model on first request to save memory at startup"""
global tokenizer, model
if tokenizer is not None and model is not None:
return True
try:
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
print(f"Loading model {MODEL_NAME}...")
print(f"Using device: {DEVICE}")
print(f"Cache directory: {cache_dir}")
# Use 4-bit quantization for memory efficiency if on CUDA
if DEVICE == "cuda":
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True
)
else:
quantization_config = None
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
cache_dir=str(cache_dir),
trust_remote_code=True
)
# Configure token if HF_TOKEN is set
hf_token = os.environ.get("HF_TOKEN")
token_kwargs = {"token": hf_token} if hf_token else {}
# Load model with appropriate settings for the device
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
cache_dir=str(cache_dir),
device_map="auto" if DEVICE == "cuda" else None,
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
quantization_config=quantization_config,
low_cpu_mem_usage=True,
trust_remote_code=True,
**token_kwargs
)
print("βœ… Model loaded successfully!")
return True
except Exception as e:
print(f"❌ Model loading failed: {str(e)}")
return False
def stream_generator(prompt):
"""Generator function for streaming response with thinking steps"""
# Ensure model is loaded
if not load_model():
yield json.dumps({"type": "error", "content": "Model not loaded"}) + '\n'
return
# Thinking phases
thinking_steps = [
"πŸ” Analyzing your question...",
"🧠 Accessing knowledge base...",
"πŸ’‘ Formulating response...",
"πŸ“š Verifying information..."
]
# Stream thinking steps
for step in thinking_steps:
yield json.dumps({"type": "thinking", "content": step}) + '\n'
time.sleep(0.8) # Reduced timing for faster response
# Prepare streaming generation
try:
# Format prompt for the model
if "mistral" in MODEL_NAME.lower():
formatted_prompt = f"<s>[INST] {prompt} [/INST]"
elif "deepseek" in MODEL_NAME.lower():
formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
else:
formatted_prompt = prompt
inputs = tokenizer(formatted_prompt, return_tensors="pt")
if DEVICE == "cuda":
inputs = inputs.to("cuda")
# Use custom streaming implementation
# Start generation
with torch.no_grad():
generated_ids = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
return_dict_in_generate=True,
output_scores=False)
# Get output sequence
output_ids = generated_ids.sequences[0][len(inputs.input_ids[0]):]
# Stream in chunks for smoother experience
full_output = ""
chunk_size = 3 # Number of tokens per chunk
for i in range(0, len(output_ids), chunk_size):
chunk_ids = output_ids[i:i+chunk_size]
chunk_text = tokenizer.decode(chunk_ids, skip_special_tokens=True)
full_output += chunk_text
yield json.dumps({
"type": "answer",
"content": chunk_text
}) + '\n'
# Small delay for smoother streaming
time.sleep(0.05)
except Exception as e:
import traceback
error_details = f"Error: {str(e)}\n{traceback.format_exc()}"
print(error_details)
yield json.dumps({
"type": "error",
"content": f"Generation error: {str(e)}"
}) + '\n'
# Signal completion
yield json.dumps({"type": "complete"}) + '\n'
# Clean up memory
if DEVICE == "cuda":
torch.cuda.empty_cache()
gc.collect()
@app.route('/stream_chat', methods=['POST'])
def stream_chat():
data = request.get_json()
prompt = data.get('prompt', '').strip()
if not prompt:
return jsonify({"error": "Empty prompt"}), 400
return Response(
stream_generator(prompt),
mimetype='text/event-stream',
headers={
'Cache-Control': 'no-cache',
'X-Accel-Buffering': 'no', # Prevent Nginx buffering
'Connection': 'keep-alive'
}
)
@app.route('/chat', methods=['POST'])
def chat():
# Ensure model is loaded
if not load_model():
return jsonify({"error": "Model failed to load"}), 500
data = request.get_json()
prompt = data.get('prompt', '').strip()
if not prompt:
return jsonify({"error": "Empty prompt"}), 400
try:
# Format prompt for the model
if "mistral" in MODEL_NAME.lower():
formatted_prompt = f"<s>[INST] {prompt} [/INST]"
elif "deepseek" in MODEL_NAME.lower():
formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
else:
formatted_prompt = prompt
inputs = tokenizer(formatted_prompt, return_tensors="pt")
if DEVICE == "cuda":
inputs = inputs.to("cuda")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
# Clean up memory
if DEVICE == "cuda":
torch.cuda.empty_cache()
gc.collect()
return jsonify({"response": response})
except Exception as e:
import traceback
error_details = f"Error: {str(e)}\n{traceback.format_exc()}"
print(error_details)
return jsonify({"error": str(e)}), 500
@app.route('/health', methods=['GET'])
def health_check():
model_loaded = tokenizer is not None and model is not None
try:
# Check if we need to load the model
if not model_loaded and request.args.get('load') == 'true':
model_loaded = load_model()
except Exception as e:
print(f"Health check error: {str(e)}")
status = {
"status": "ok" if model_loaded else "waiting",
"model_loaded": model_loaded,
"device": DEVICE,
"cache_dir": str(cache_dir),
"max_tokens": MAX_NEW_TOKENS,
"memory_usage": f"{torch.cuda.memory_allocated()/1024**2:.2f}MB"
if torch.cuda.is_available() else "CPU"
}
return jsonify(status)
@app.route('/')
def home():
return jsonify({
"service": "DeepSeek Chat API",
"status": "online",
"endpoints": {
"POST /chat": "Single-response chat",
"POST /stream_chat": "Streaming chat with thinking steps",
"GET /health": "Service health check"
},
"config": {
"model": MODEL_NAME,
"max_tokens": MAX_NEW_TOKENS,
"cache_location": str(cache_dir)
}
})
if __name__ == '__main__':
# Load model at startup - only if explicitly requested
if os.getenv('PRELOAD_MODEL', 'false').lower() == 'true':
load_model()
port = int(os.environ.get("PORT", 5000))
app.run(host='0.0.0.0', port=port)