Thinking / app.py
mike23415's picture
Update app.py
d10798f verified
raw
history blame
2.86 kB
import os
from pathlib import Path
from flask import Flask, request, jsonify
from flask_cors import CORS
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Create cache directory if not exists
cache_dir = Path(os.getenv('TRANSFORMERS_CACHE', '/app/cache'))
cache_dir.mkdir(parents=True, exist_ok=True)
app = Flask(__name__)
CORS(app)
# Model configuration
MODEL_NAME = "deepseek-ai/deepseek-r1-6b-chat"
MAX_NEW_TOKENS = 256
DEVICE = "cpu"
# Initialize model
try:
tokenizer = AutoTokenizer.from_pretrained( # Fixed this line
MODEL_NAME,
cache_dir=str(cache_dir)
) # Added closing parenthesis
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
cache_dir=str(cache_dir),
device_map="auto",
torch_dtype=torch.float32,
low_cpu_mem_usage=True
)
print("Model loaded successfully!")
except Exception as e:
print(f"Model loading failed: {str(e)}")
model = None
def generate_response(prompt):
try:
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)
outputs = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
return f"Error generating response: {str(e)}"
@app.route('/chat', methods=['POST'])
def chat():
if not model:
return jsonify({"error": "Model not loaded"}), 500
data = request.get_json()
if not data or 'prompt' not in data:
return jsonify({"error": "No prompt provided"}), 400
prompt = data['prompt'].strip()
if not prompt:
return jsonify({"error": "Empty prompt"}), 400
try:
response = generate_response(prompt)
# Clean up extra text after the final answer
response = response.split("</s>")[0].strip()
return jsonify({"response": response})
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route('/health', methods=['GET'])
def health_check():
status = {
"model_loaded": bool(model),
"device": DEVICE,
"cache_dir": str(cache_dir),
"memory_usage": f"{torch.cuda.memory_allocated()/1024**2:.2f}MB" if torch.cuda.is_available() else "CPU"
}
return jsonify(status)
@app.route('/')
def home():
return jsonify({
"service": "DeepSeek Chat API",
"endpoints": {
"POST /chat": "Process chat prompts",
"GET /health": "Service health check"
},
"config": {
"max_tokens": MAX_NEW_TOKENS,
"model": MODEL_NAME
}
})
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)