Update app.py
Browse files
app.py
CHANGED
@@ -5,44 +5,65 @@ import numpy as np
|
|
5 |
from pathlib import Path
|
6 |
from flask import Flask, request, jsonify, Response
|
7 |
from flask_cors import CORS
|
8 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, TextStreamer
|
9 |
import torch
|
10 |
-
|
11 |
-
# Verify numpy version
|
12 |
-
assert np.__version__.startswith('1.'), f"Invalid numpy version {np.__version__} - must be 1.x series"
|
13 |
|
14 |
# Create cache directory if not exists
|
15 |
cache_dir = Path(os.getenv('TRANSFORMERS_CACHE', '/app/cache'))
|
16 |
cache_dir.mkdir(parents=True, exist_ok=True)
|
17 |
|
18 |
app = Flask(__name__)
|
19 |
-
CORS(app)
|
20 |
|
21 |
# Model configuration
|
22 |
MODEL_NAME = "deepseek-ai/deepseek-r1-6b-chat"
|
23 |
MAX_NEW_TOKENS = 256
|
24 |
-
DEVICE = "cpu"
|
25 |
|
26 |
-
# Initialize model
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
32 |
|
33 |
-
model
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
def stream_generator(prompt):
|
45 |
"""Generator function for streaming response with thinking steps"""
|
|
|
|
|
|
|
|
|
|
|
46 |
# Thinking phases
|
47 |
thinking_steps = [
|
48 |
"π Analyzing your question...",
|
@@ -54,48 +75,65 @@ def stream_generator(prompt):
|
|
54 |
# Stream thinking steps
|
55 |
for step in thinking_steps:
|
56 |
yield json.dumps({"type": "thinking", "content": step}) + '\n'
|
57 |
-
time.sleep(
|
58 |
|
59 |
# Prepare streaming generation
|
60 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE)
|
61 |
-
streamer = TextStreamer(tokenizer, skip_prompt=True)
|
62 |
-
|
63 |
-
# Generate response chunks
|
64 |
try:
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
streamer=streamer,
|
69 |
-
temperature=0.7,
|
70 |
-
top_p=0.9,
|
71 |
-
do_sample=True,
|
72 |
-
pad_token_id=tokenizer.eos_token_id)
|
73 |
|
74 |
-
#
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
except Exception as e:
|
|
|
|
|
|
|
87 |
yield json.dumps({
|
88 |
"type": "error",
|
89 |
"content": f"Generation error: {str(e)}"
|
90 |
}) + '\n'
|
91 |
|
|
|
92 |
yield json.dumps({"type": "complete"}) + '\n'
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
@app.route('/stream_chat', methods=['POST'])
|
95 |
def stream_chat():
|
96 |
-
if not model:
|
97 |
-
return jsonify({"error": "Model not loaded"}), 500
|
98 |
-
|
99 |
data = request.get_json()
|
100 |
prompt = data.get('prompt', '').strip()
|
101 |
|
@@ -107,14 +145,16 @@ def stream_chat():
|
|
107 |
mimetype='text/event-stream',
|
108 |
headers={
|
109 |
'Cache-Control': 'no-cache',
|
|
|
110 |
'Connection': 'keep-alive'
|
111 |
}
|
112 |
)
|
113 |
|
114 |
@app.route('/chat', methods=['POST'])
|
115 |
def chat():
|
116 |
-
|
117 |
-
|
|
|
118 |
|
119 |
data = request.get_json()
|
120 |
prompt = data.get('prompt', '').strip()
|
@@ -123,26 +163,48 @@ def chat():
|
|
123 |
return jsonify({"error": "Empty prompt"}), 400
|
124 |
|
125 |
try:
|
126 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
136 |
-
response = response.split("</s>")[0].strip()
|
137 |
return jsonify({"response": response})
|
138 |
|
139 |
except Exception as e:
|
|
|
|
|
|
|
140 |
return jsonify({"error": str(e)}), 500
|
141 |
|
142 |
@app.route('/health', methods=['GET'])
|
143 |
def health_check():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
status = {
|
145 |
-
"
|
|
|
146 |
"device": DEVICE,
|
147 |
"cache_dir": str(cache_dir),
|
148 |
"max_tokens": MAX_NEW_TOKENS,
|
@@ -155,6 +217,7 @@ def health_check():
|
|
155 |
def home():
|
156 |
return jsonify({
|
157 |
"service": "DeepSeek Chat API",
|
|
|
158 |
"endpoints": {
|
159 |
"POST /chat": "Single-response chat",
|
160 |
"POST /stream_chat": "Streaming chat with thinking steps",
|
@@ -168,4 +231,9 @@ def home():
|
|
168 |
})
|
169 |
|
170 |
if __name__ == '__main__':
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from pathlib import Path
|
6 |
from flask import Flask, request, jsonify, Response
|
7 |
from flask_cors import CORS
|
|
|
8 |
import torch
|
9 |
+
import gc # For garbage collection
|
|
|
|
|
10 |
|
11 |
# Create cache directory if not exists
|
12 |
cache_dir = Path(os.getenv('TRANSFORMERS_CACHE', '/app/cache'))
|
13 |
cache_dir.mkdir(parents=True, exist_ok=True)
|
14 |
|
15 |
app = Flask(__name__)
|
16 |
+
CORS(app) # Allow cross-origin requests
|
17 |
|
18 |
# Model configuration
|
19 |
MODEL_NAME = "deepseek-ai/deepseek-r1-6b-chat"
|
20 |
MAX_NEW_TOKENS = 256
|
21 |
+
DEVICE = "cpu" if not torch.cuda.is_available() else "cuda"
|
22 |
|
23 |
+
# Initialize model variables
|
24 |
+
tokenizer = None
|
25 |
+
model = None
|
26 |
+
|
27 |
+
def load_model():
|
28 |
+
"""Load model on first request to save memory at startup"""
|
29 |
+
global tokenizer, model
|
30 |
|
31 |
+
if tokenizer is not None and model is not None:
|
32 |
+
return True
|
33 |
+
|
34 |
+
try:
|
35 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
36 |
+
print(f"Loading model {MODEL_NAME}...")
|
37 |
+
print(f"Using device: {DEVICE}")
|
38 |
+
print(f"Cache directory: {cache_dir}")
|
39 |
+
|
40 |
+
# Load tokenizer
|
41 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
42 |
+
MODEL_NAME,
|
43 |
+
cache_dir=str(cache_dir)
|
44 |
+
)
|
45 |
+
|
46 |
+
# Load model with low memory settings
|
47 |
+
model = AutoModelForCausalLM.from_pretrained(
|
48 |
+
MODEL_NAME,
|
49 |
+
cache_dir=str(cache_dir),
|
50 |
+
device_map="auto" if DEVICE == "cuda" else None,
|
51 |
+
torch_dtype=torch.float16 if DEVICE == "cuda" else torch.float32,
|
52 |
+
low_cpu_mem_usage=True)
|
53 |
+
|
54 |
+
print("β
Model loaded successfully!")
|
55 |
+
return True
|
56 |
+
except Exception as e:
|
57 |
+
print(f"β Model loading failed: {str(e)}")
|
58 |
+
return False
|
59 |
|
60 |
def stream_generator(prompt):
|
61 |
"""Generator function for streaming response with thinking steps"""
|
62 |
+
# Ensure model is loaded
|
63 |
+
if not load_model():
|
64 |
+
yield json.dumps({"type": "error", "content": "Model not loaded"}) + '\n'
|
65 |
+
return
|
66 |
+
|
67 |
# Thinking phases
|
68 |
thinking_steps = [
|
69 |
"π Analyzing your question...",
|
|
|
75 |
# Stream thinking steps
|
76 |
for step in thinking_steps:
|
77 |
yield json.dumps({"type": "thinking", "content": step}) + '\n'
|
78 |
+
time.sleep(0.8) # Reduced timing for faster response
|
79 |
|
80 |
# Prepare streaming generation
|
|
|
|
|
|
|
|
|
81 |
try:
|
82 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
83 |
+
if DEVICE == "cuda":
|
84 |
+
inputs = inputs.to("cuda")
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
# Use custom streaming implementation
|
87 |
+
# Start generation
|
88 |
+
with torch.no_grad():
|
89 |
+
generated_ids = model.generate(
|
90 |
+
**inputs,
|
91 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
92 |
+
temperature=0.7,
|
93 |
+
top_p=0.9,
|
94 |
+
do_sample=True,
|
95 |
+
pad_token_id=tokenizer.eos_token_id,
|
96 |
+
return_dict_in_generate=True,
|
97 |
+
output_scores=False)
|
98 |
+
|
99 |
+
# Get output sequence
|
100 |
+
output_ids = generated_ids.sequences[0][len(inputs.input_ids[0]):]
|
101 |
+
|
102 |
+
# Stream in chunks for smoother experience
|
103 |
+
full_output = ""
|
104 |
+
chunk_size = 3 # Number of tokens per chunk
|
105 |
+
for i in range(0, len(output_ids), chunk_size):
|
106 |
+
chunk_ids = output_ids[i:i+chunk_size]
|
107 |
+
chunk_text = tokenizer.decode(chunk_ids, skip_special_tokens=True)
|
108 |
+
full_output += chunk_text
|
109 |
+
|
110 |
+
yield json.dumps({
|
111 |
+
"type": "answer",
|
112 |
+
"content": chunk_text
|
113 |
+
}) + '\n'
|
114 |
+
|
115 |
+
# Small delay for smoother streaming
|
116 |
+
time.sleep(0.05)
|
117 |
+
|
118 |
except Exception as e:
|
119 |
+
import traceback
|
120 |
+
error_details = f"Error: {str(e)}\n{traceback.format_exc()}"
|
121 |
+
print(error_details)
|
122 |
yield json.dumps({
|
123 |
"type": "error",
|
124 |
"content": f"Generation error: {str(e)}"
|
125 |
}) + '\n'
|
126 |
|
127 |
+
# Signal completion
|
128 |
yield json.dumps({"type": "complete"}) + '\n'
|
129 |
+
|
130 |
+
# Clean up memory
|
131 |
+
if DEVICE == "cuda":
|
132 |
+
torch.cuda.empty_cache()
|
133 |
+
gc.collect()
|
134 |
|
135 |
@app.route('/stream_chat', methods=['POST'])
|
136 |
def stream_chat():
|
|
|
|
|
|
|
137 |
data = request.get_json()
|
138 |
prompt = data.get('prompt', '').strip()
|
139 |
|
|
|
145 |
mimetype='text/event-stream',
|
146 |
headers={
|
147 |
'Cache-Control': 'no-cache',
|
148 |
+
'X-Accel-Buffering': 'no', # Prevent Nginx buffering
|
149 |
'Connection': 'keep-alive'
|
150 |
}
|
151 |
)
|
152 |
|
153 |
@app.route('/chat', methods=['POST'])
|
154 |
def chat():
|
155 |
+
# Ensure model is loaded
|
156 |
+
if not load_model():
|
157 |
+
return jsonify({"error": "Model failed to load"}), 500
|
158 |
|
159 |
data = request.get_json()
|
160 |
prompt = data.get('prompt', '').strip()
|
|
|
163 |
return jsonify({"error": "Empty prompt"}), 400
|
164 |
|
165 |
try:
|
166 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
167 |
+
if DEVICE == "cuda":
|
168 |
+
inputs = inputs.to("cuda")
|
169 |
+
|
170 |
+
with torch.no_grad():
|
171 |
+
outputs = model.generate(
|
172 |
+
**inputs,
|
173 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
174 |
+
temperature=0.7,
|
175 |
+
top_p=0.9,
|
176 |
+
do_sample=True,
|
177 |
+
pad_token_id=tokenizer.eos_token_id)
|
178 |
+
|
179 |
+
response = tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
|
180 |
+
|
181 |
+
# Clean up memory
|
182 |
+
if DEVICE == "cuda":
|
183 |
+
torch.cuda.empty_cache()
|
184 |
+
gc.collect()
|
185 |
|
|
|
|
|
186 |
return jsonify({"response": response})
|
187 |
|
188 |
except Exception as e:
|
189 |
+
import traceback
|
190 |
+
error_details = f"Error: {str(e)}\n{traceback.format_exc()}"
|
191 |
+
print(error_details)
|
192 |
return jsonify({"error": str(e)}), 500
|
193 |
|
194 |
@app.route('/health', methods=['GET'])
|
195 |
def health_check():
|
196 |
+
model_loaded = tokenizer is not None and model is not None
|
197 |
+
|
198 |
+
try:
|
199 |
+
# Check if we need to load the model
|
200 |
+
if not model_loaded and request.args.get('load') == 'true':
|
201 |
+
model_loaded = load_model()
|
202 |
+
except Exception as e:
|
203 |
+
print(f"Health check error: {str(e)}")
|
204 |
+
|
205 |
status = {
|
206 |
+
"status": "ok" if model_loaded else "waiting",
|
207 |
+
"model_loaded": model_loaded,
|
208 |
"device": DEVICE,
|
209 |
"cache_dir": str(cache_dir),
|
210 |
"max_tokens": MAX_NEW_TOKENS,
|
|
|
217 |
def home():
|
218 |
return jsonify({
|
219 |
"service": "DeepSeek Chat API",
|
220 |
+
"status": "online",
|
221 |
"endpoints": {
|
222 |
"POST /chat": "Single-response chat",
|
223 |
"POST /stream_chat": "Streaming chat with thinking steps",
|
|
|
231 |
})
|
232 |
|
233 |
if __name__ == '__main__':
|
234 |
+
# Load model at startup - only if explicitly requested
|
235 |
+
if os.getenv('PRELOAD_MODEL', 'false').lower() == 'true':
|
236 |
+
load_model()
|
237 |
+
|
238 |
+
port = int(os.environ.get("PORT", 5000))
|
239 |
+
app.run(host='0.0.0.0', port=port)
|