Update app.py
Browse files
app.py
CHANGED
@@ -1,135 +1,105 @@
|
|
1 |
import os
|
2 |
import time
|
3 |
import json
|
4 |
-
import gc
|
5 |
from pathlib import Path
|
6 |
from flask import Flask, request, jsonify, Response
|
7 |
from flask_cors import CORS
|
8 |
import torch
|
9 |
|
10 |
-
#
|
11 |
cache_dir = Path(os.getenv('TRANSFORMERS_CACHE', '/app/cache'))
|
12 |
cache_dir.mkdir(parents=True, exist_ok=True)
|
13 |
|
14 |
app = Flask(__name__)
|
15 |
-
CORS(app)
|
16 |
|
17 |
-
# Model configuration
|
18 |
-
# Use DeepSeek R1 Distill Qwen 1.5B model (much lighter than 7B)
|
19 |
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
20 |
MAX_NEW_TOKENS = 256
|
21 |
-
DEVICE = "
|
22 |
|
23 |
-
# Initialize model variables
|
24 |
tokenizer = None
|
25 |
model = None
|
26 |
|
27 |
def load_model():
|
28 |
-
"""Load model on first request to save memory at startup"""
|
29 |
global tokenizer, model
|
30 |
-
|
31 |
if tokenizer is not None and model is not None:
|
32 |
return True
|
33 |
-
|
34 |
try:
|
35 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
36 |
-
|
37 |
-
print(f"
|
38 |
-
print(f"
|
39 |
-
|
40 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
if DEVICE == "cuda":
|
42 |
-
|
43 |
load_in_4bit=True,
|
44 |
bnb_4bit_compute_dtype=torch.float16,
|
45 |
bnb_4bit_quant_type="nf4",
|
46 |
bnb_4bit_use_double_quant=True
|
47 |
)
|
48 |
-
else:
|
49 |
-
# For CPU, we'll use a different optimization approach
|
50 |
-
quantization_config = None
|
51 |
-
|
52 |
-
# Load tokenizer
|
53 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
54 |
-
MODEL_NAME,
|
55 |
-
cache_dir=str(cache_dir),
|
56 |
-
trust_remote_code=True
|
57 |
-
)
|
58 |
-
|
59 |
-
# Configure token if HF_TOKEN is set
|
60 |
-
hf_token = os.environ.get("HF_TOKEN")
|
61 |
-
token_kwargs = {"token": hf_token} if hf_token else {}
|
62 |
-
|
63 |
-
# Additional memory optimization settings for low resource environments
|
64 |
-
if DEVICE == "cpu":
|
65 |
-
# Load model with 8-bit quantization for CPU
|
66 |
-
try:
|
67 |
-
# Try int8 quantization for CPU
|
68 |
-
model = AutoModelForCausalLM.from_pretrained(
|
69 |
-
MODEL_NAME,
|
70 |
-
cache_dir=str(cache_dir),
|
71 |
-
load_in_8bit=True,
|
72 |
-
low_cpu_mem_usage=True,
|
73 |
-
trust_remote_code=True,
|
74 |
-
**token_kwargs
|
75 |
-
)
|
76 |
-
except Exception as e:
|
77 |
-
print(f"8-bit quantization failed, falling back to standard loading: {str(e)}")
|
78 |
-
model = AutoModelForCausalLM.from_pretrained(
|
79 |
-
MODEL_NAME,
|
80 |
-
cache_dir=str(cache_dir),
|
81 |
-
low_cpu_mem_usage=True,
|
82 |
-
trust_remote_code=True,
|
83 |
-
**token_kwargs
|
84 |
-
)
|
85 |
-
else:
|
86 |
-
# Load model with 4-bit quantization for CUDA
|
87 |
model = AutoModelForCausalLM.from_pretrained(
|
88 |
MODEL_NAME,
|
89 |
cache_dir=str(cache_dir),
|
|
|
90 |
device_map="auto",
|
|
|
91 |
torch_dtype=torch.float16,
|
92 |
-
quantization_config=quantization_config,
|
93 |
low_cpu_mem_usage=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
trust_remote_code=True,
|
|
|
|
|
95 |
**token_kwargs
|
96 |
)
|
97 |
-
|
98 |
-
print("✅ Model loaded successfully
|
99 |
return True
|
|
|
100 |
except Exception as e:
|
101 |
-
print(f"❌
|
102 |
return False
|
103 |
|
104 |
def stream_generator(prompt):
|
105 |
-
"""Generator function for streaming response with thinking steps"""
|
106 |
-
# Ensure model is loaded
|
107 |
if not load_model():
|
108 |
yield json.dumps({"type": "error", "content": "Model not loaded"}) + '\n'
|
109 |
return
|
110 |
-
|
111 |
-
# Thinking phases
|
112 |
thinking_steps = [
|
113 |
"🔍 Analyzing your question...",
|
114 |
"🧠 Processing...",
|
115 |
"💡 Formulating response..."
|
116 |
]
|
117 |
-
|
118 |
-
# Stream thinking steps (fewer steps, faster timing for lighter model)
|
119 |
for step in thinking_steps:
|
120 |
yield json.dumps({"type": "thinking", "content": step}) + '\n'
|
121 |
-
time.sleep(0.5)
|
122 |
-
|
123 |
-
# Prepare streaming generation
|
124 |
try:
|
125 |
-
# Format prompt for the model (DeepSeek specific)
|
126 |
formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
|
127 |
-
|
128 |
inputs = tokenizer(formatted_prompt, return_tensors="pt")
|
129 |
if DEVICE == "cuda":
|
130 |
inputs = inputs.to("cuda")
|
131 |
-
|
132 |
-
# Use memory efficient approach
|
133 |
with torch.no_grad():
|
134 |
generated_ids = model.generate(
|
135 |
**inputs,
|
@@ -139,40 +109,28 @@ def stream_generator(prompt):
|
|
139 |
do_sample=True,
|
140 |
pad_token_id=tokenizer.eos_token_id,
|
141 |
return_dict_in_generate=True,
|
142 |
-
output_scores=False
|
143 |
-
|
144 |
-
|
145 |
output_ids = generated_ids.sequences[0][len(inputs.input_ids[0]):]
|
146 |
-
|
147 |
-
# Stream in slightly larger chunks for better performance
|
148 |
full_output = ""
|
149 |
-
chunk_size = 5
|
|
|
150 |
for i in range(0, len(output_ids), chunk_size):
|
151 |
-
chunk_ids = output_ids[i:i+chunk_size]
|
152 |
chunk_text = tokenizer.decode(chunk_ids, skip_special_tokens=True)
|
153 |
full_output += chunk_text
|
154 |
-
|
155 |
-
yield json.dumps({
|
156 |
-
"type": "answer",
|
157 |
-
"content": chunk_text
|
158 |
-
}) + '\n'
|
159 |
-
|
160 |
-
# Smaller delay for faster streaming
|
161 |
time.sleep(0.03)
|
162 |
-
|
163 |
except Exception as e:
|
164 |
import traceback
|
165 |
error_details = f"Error: {str(e)}\n{traceback.format_exc()}"
|
166 |
print(error_details)
|
167 |
-
yield json.dumps({
|
168 |
-
|
169 |
-
"content": f"Generation error: {str(e)}"
|
170 |
-
}) + '\n'
|
171 |
-
|
172 |
-
# Signal completion
|
173 |
yield json.dumps({"type": "complete"}) + '\n'
|
174 |
-
|
175 |
-
# Clean up memory aggressively
|
176 |
if DEVICE == "cuda":
|
177 |
torch.cuda.empty_cache()
|
178 |
gc.collect()
|
@@ -181,40 +139,37 @@ def stream_generator(prompt):
|
|
181 |
def stream_chat():
|
182 |
data = request.get_json()
|
183 |
prompt = data.get('prompt', '').strip()
|
184 |
-
|
185 |
if not prompt:
|
186 |
return jsonify({"error": "Empty prompt"}), 400
|
187 |
-
|
188 |
return Response(
|
189 |
stream_generator(prompt),
|
190 |
mimetype='text/event-stream',
|
191 |
headers={
|
192 |
'Cache-Control': 'no-cache',
|
193 |
-
'X-Accel-Buffering': 'no',
|
194 |
'Connection': 'keep-alive'
|
195 |
}
|
196 |
)
|
197 |
|
198 |
@app.route('/chat', methods=['POST'])
|
199 |
def chat():
|
200 |
-
# Ensure model is loaded
|
201 |
if not load_model():
|
202 |
return jsonify({"error": "Model failed to load"}), 500
|
203 |
-
|
204 |
data = request.get_json()
|
205 |
prompt = data.get('prompt', '').strip()
|
206 |
-
|
207 |
if not prompt:
|
208 |
return jsonify({"error": "Empty prompt"}), 400
|
209 |
-
|
210 |
try:
|
211 |
-
# Format prompt for DeepSeek model
|
212 |
formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
|
213 |
-
|
214 |
inputs = tokenizer(formatted_prompt, return_tensors="pt")
|
215 |
if DEVICE == "cuda":
|
216 |
inputs = inputs.to("cuda")
|
217 |
-
|
218 |
with torch.no_grad():
|
219 |
outputs = model.generate(
|
220 |
**inputs,
|
@@ -222,43 +177,37 @@ def chat():
|
|
222 |
temperature=0.7,
|
223 |
top_p=0.9,
|
224 |
do_sample=True,
|
225 |
-
pad_token_id=tokenizer.eos_token_id
|
226 |
-
|
|
|
227 |
response = tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
|
228 |
-
|
229 |
-
# Clean up memory
|
230 |
if DEVICE == "cuda":
|
231 |
torch.cuda.empty_cache()
|
232 |
gc.collect()
|
233 |
-
|
234 |
return jsonify({"response": response})
|
235 |
-
|
236 |
except Exception as e:
|
237 |
import traceback
|
238 |
-
|
239 |
-
print(error_details)
|
240 |
return jsonify({"error": str(e)}), 500
|
241 |
|
242 |
@app.route('/health', methods=['GET'])
|
243 |
def health_check():
|
244 |
model_loaded = tokenizer is not None and model is not None
|
245 |
memory_info = "N/A"
|
246 |
-
|
247 |
-
# Get memory usage stats
|
248 |
if torch.cuda.is_available():
|
249 |
memory_info = f"{torch.cuda.memory_allocated()/1024**2:.2f}MB / {torch.cuda.get_device_properties(0).total_memory/1024**2:.2f}MB"
|
250 |
else:
|
251 |
import psutil
|
252 |
memory_info = f"{psutil.virtual_memory().used/1024**3:.2f}GB / {psutil.virtual_memory().total/1024**3:.2f}GB"
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
except Exception as e:
|
259 |
-
print(f"Health check error: {str(e)}")
|
260 |
-
|
261 |
-
status = {
|
262 |
"status": "ok" if model_loaded else "waiting",
|
263 |
"model": MODEL_NAME,
|
264 |
"model_loaded": model_loaded,
|
@@ -266,27 +215,20 @@ def health_check():
|
|
266 |
"cache_dir": str(cache_dir),
|
267 |
"max_tokens": MAX_NEW_TOKENS,
|
268 |
"memory_usage": memory_info
|
269 |
-
}
|
270 |
-
return jsonify(status)
|
271 |
|
272 |
@app.route('/unload', methods=['POST'])
|
273 |
def unload_model():
|
274 |
-
"""Endpoint to manually unload model and free memory"""
|
275 |
global model, tokenizer
|
276 |
-
|
277 |
if model is not None:
|
278 |
del model
|
279 |
model = None
|
280 |
-
|
281 |
if tokenizer is not None:
|
282 |
del tokenizer
|
283 |
tokenizer = None
|
284 |
-
|
285 |
-
# Force garbage collection
|
286 |
if torch.cuda.is_available():
|
287 |
torch.cuda.empty_cache()
|
288 |
gc.collect()
|
289 |
-
|
290 |
return jsonify({"status": "Model unloaded", "memory_freed": True})
|
291 |
|
292 |
@app.route('/')
|
@@ -296,9 +238,9 @@ def home():
|
|
296 |
"status": "online",
|
297 |
"endpoints": {
|
298 |
"POST /chat": "Single-response chat",
|
299 |
-
"POST /stream_chat": "Streaming chat
|
300 |
"GET /health": "Service health check",
|
301 |
-
"POST /unload": "Unload model
|
302 |
},
|
303 |
"config": {
|
304 |
"model": MODEL_NAME,
|
@@ -309,9 +251,7 @@ def home():
|
|
309 |
})
|
310 |
|
311 |
if __name__ == '__main__':
|
312 |
-
# Load model at startup only if explicitly requested
|
313 |
if os.getenv('PRELOAD_MODEL', 'false').lower() == 'true':
|
314 |
load_model()
|
315 |
-
|
316 |
port = int(os.environ.get("PORT", 5000))
|
317 |
-
app.run(host='0.0.0.0', port=port)
|
|
|
1 |
import os
|
2 |
import time
|
3 |
import json
|
4 |
+
import gc
|
5 |
from pathlib import Path
|
6 |
from flask import Flask, request, jsonify, Response
|
7 |
from flask_cors import CORS
|
8 |
import torch
|
9 |
|
10 |
+
# Cache and model settings
|
11 |
cache_dir = Path(os.getenv('TRANSFORMERS_CACHE', '/app/cache'))
|
12 |
cache_dir.mkdir(parents=True, exist_ok=True)
|
13 |
|
14 |
app = Flask(__name__)
|
15 |
+
CORS(app)
|
16 |
|
|
|
|
|
17 |
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
18 |
MAX_NEW_TOKENS = 256
|
19 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
|
|
|
21 |
tokenizer = None
|
22 |
model = None
|
23 |
|
24 |
def load_model():
|
|
|
25 |
global tokenizer, model
|
26 |
+
|
27 |
if tokenizer is not None and model is not None:
|
28 |
return True
|
29 |
+
|
30 |
try:
|
31 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
32 |
+
|
33 |
+
print(f"Loading model: {MODEL_NAME}")
|
34 |
+
print(f"Device: {DEVICE}")
|
35 |
+
|
36 |
+
# HF auth token if needed
|
37 |
+
hf_token = os.environ.get("HF_TOKEN")
|
38 |
+
token_kwargs = {"token": hf_token} if hf_token else {}
|
39 |
+
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
41 |
+
MODEL_NAME,
|
42 |
+
cache_dir=str(cache_dir),
|
43 |
+
trust_remote_code=True,
|
44 |
+
**token_kwargs
|
45 |
+
)
|
46 |
+
|
47 |
if DEVICE == "cuda":
|
48 |
+
quant_config = BitsAndBytesConfig(
|
49 |
load_in_4bit=True,
|
50 |
bnb_4bit_compute_dtype=torch.float16,
|
51 |
bnb_4bit_quant_type="nf4",
|
52 |
bnb_4bit_use_double_quant=True
|
53 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
model = AutoModelForCausalLM.from_pretrained(
|
55 |
MODEL_NAME,
|
56 |
cache_dir=str(cache_dir),
|
57 |
+
trust_remote_code=True,
|
58 |
device_map="auto",
|
59 |
+
quantization_config=quant_config,
|
60 |
torch_dtype=torch.float16,
|
|
|
61 |
low_cpu_mem_usage=True,
|
62 |
+
**token_kwargs
|
63 |
+
)
|
64 |
+
else:
|
65 |
+
# CPU: no quantization_config; use float16 if possible
|
66 |
+
model = AutoModelForCausalLM.from_pretrained(
|
67 |
+
MODEL_NAME,
|
68 |
+
cache_dir=str(cache_dir),
|
69 |
trust_remote_code=True,
|
70 |
+
torch_dtype=torch.float16,
|
71 |
+
low_cpu_mem_usage=True,
|
72 |
**token_kwargs
|
73 |
)
|
74 |
+
|
75 |
+
print("✅ Model loaded successfully")
|
76 |
return True
|
77 |
+
|
78 |
except Exception as e:
|
79 |
+
print(f"❌ Failed to load model: {e}")
|
80 |
return False
|
81 |
|
82 |
def stream_generator(prompt):
|
|
|
|
|
83 |
if not load_model():
|
84 |
yield json.dumps({"type": "error", "content": "Model not loaded"}) + '\n'
|
85 |
return
|
86 |
+
|
|
|
87 |
thinking_steps = [
|
88 |
"🔍 Analyzing your question...",
|
89 |
"🧠 Processing...",
|
90 |
"💡 Formulating response..."
|
91 |
]
|
92 |
+
|
|
|
93 |
for step in thinking_steps:
|
94 |
yield json.dumps({"type": "thinking", "content": step}) + '\n'
|
95 |
+
time.sleep(0.5)
|
96 |
+
|
|
|
97 |
try:
|
|
|
98 |
formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
|
|
|
99 |
inputs = tokenizer(formatted_prompt, return_tensors="pt")
|
100 |
if DEVICE == "cuda":
|
101 |
inputs = inputs.to("cuda")
|
102 |
+
|
|
|
103 |
with torch.no_grad():
|
104 |
generated_ids = model.generate(
|
105 |
**inputs,
|
|
|
109 |
do_sample=True,
|
110 |
pad_token_id=tokenizer.eos_token_id,
|
111 |
return_dict_in_generate=True,
|
112 |
+
output_scores=False
|
113 |
+
)
|
114 |
+
|
115 |
output_ids = generated_ids.sequences[0][len(inputs.input_ids[0]):]
|
|
|
|
|
116 |
full_output = ""
|
117 |
+
chunk_size = 5
|
118 |
+
|
119 |
for i in range(0, len(output_ids), chunk_size):
|
120 |
+
chunk_ids = output_ids[i:i + chunk_size]
|
121 |
chunk_text = tokenizer.decode(chunk_ids, skip_special_tokens=True)
|
122 |
full_output += chunk_text
|
123 |
+
yield json.dumps({"type": "answer", "content": chunk_text}) + '\n'
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
time.sleep(0.03)
|
125 |
+
|
126 |
except Exception as e:
|
127 |
import traceback
|
128 |
error_details = f"Error: {str(e)}\n{traceback.format_exc()}"
|
129 |
print(error_details)
|
130 |
+
yield json.dumps({"type": "error", "content": str(e)}) + '\n'
|
131 |
+
|
|
|
|
|
|
|
|
|
132 |
yield json.dumps({"type": "complete"}) + '\n'
|
133 |
+
|
|
|
134 |
if DEVICE == "cuda":
|
135 |
torch.cuda.empty_cache()
|
136 |
gc.collect()
|
|
|
139 |
def stream_chat():
|
140 |
data = request.get_json()
|
141 |
prompt = data.get('prompt', '').strip()
|
142 |
+
|
143 |
if not prompt:
|
144 |
return jsonify({"error": "Empty prompt"}), 400
|
145 |
+
|
146 |
return Response(
|
147 |
stream_generator(prompt),
|
148 |
mimetype='text/event-stream',
|
149 |
headers={
|
150 |
'Cache-Control': 'no-cache',
|
151 |
+
'X-Accel-Buffering': 'no',
|
152 |
'Connection': 'keep-alive'
|
153 |
}
|
154 |
)
|
155 |
|
156 |
@app.route('/chat', methods=['POST'])
|
157 |
def chat():
|
|
|
158 |
if not load_model():
|
159 |
return jsonify({"error": "Model failed to load"}), 500
|
160 |
+
|
161 |
data = request.get_json()
|
162 |
prompt = data.get('prompt', '').strip()
|
163 |
+
|
164 |
if not prompt:
|
165 |
return jsonify({"error": "Empty prompt"}), 400
|
166 |
+
|
167 |
try:
|
|
|
168 |
formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
|
|
|
169 |
inputs = tokenizer(formatted_prompt, return_tensors="pt")
|
170 |
if DEVICE == "cuda":
|
171 |
inputs = inputs.to("cuda")
|
172 |
+
|
173 |
with torch.no_grad():
|
174 |
outputs = model.generate(
|
175 |
**inputs,
|
|
|
177 |
temperature=0.7,
|
178 |
top_p=0.9,
|
179 |
do_sample=True,
|
180 |
+
pad_token_id=tokenizer.eos_token_id
|
181 |
+
)
|
182 |
+
|
183 |
response = tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
|
184 |
+
|
|
|
185 |
if DEVICE == "cuda":
|
186 |
torch.cuda.empty_cache()
|
187 |
gc.collect()
|
188 |
+
|
189 |
return jsonify({"response": response})
|
190 |
+
|
191 |
except Exception as e:
|
192 |
import traceback
|
193 |
+
print(f"Error: {e}\n{traceback.format_exc()}")
|
|
|
194 |
return jsonify({"error": str(e)}), 500
|
195 |
|
196 |
@app.route('/health', methods=['GET'])
|
197 |
def health_check():
|
198 |
model_loaded = tokenizer is not None and model is not None
|
199 |
memory_info = "N/A"
|
200 |
+
|
|
|
201 |
if torch.cuda.is_available():
|
202 |
memory_info = f"{torch.cuda.memory_allocated()/1024**2:.2f}MB / {torch.cuda.get_device_properties(0).total_memory/1024**2:.2f}MB"
|
203 |
else:
|
204 |
import psutil
|
205 |
memory_info = f"{psutil.virtual_memory().used/1024**3:.2f}GB / {psutil.virtual_memory().total/1024**3:.2f}GB"
|
206 |
+
|
207 |
+
if not model_loaded and request.args.get('load') == 'true':
|
208 |
+
model_loaded = load_model()
|
209 |
+
|
210 |
+
return jsonify({
|
|
|
|
|
|
|
|
|
211 |
"status": "ok" if model_loaded else "waiting",
|
212 |
"model": MODEL_NAME,
|
213 |
"model_loaded": model_loaded,
|
|
|
215 |
"cache_dir": str(cache_dir),
|
216 |
"max_tokens": MAX_NEW_TOKENS,
|
217 |
"memory_usage": memory_info
|
218 |
+
})
|
|
|
219 |
|
220 |
@app.route('/unload', methods=['POST'])
|
221 |
def unload_model():
|
|
|
222 |
global model, tokenizer
|
|
|
223 |
if model is not None:
|
224 |
del model
|
225 |
model = None
|
|
|
226 |
if tokenizer is not None:
|
227 |
del tokenizer
|
228 |
tokenizer = None
|
|
|
|
|
229 |
if torch.cuda.is_available():
|
230 |
torch.cuda.empty_cache()
|
231 |
gc.collect()
|
|
|
232 |
return jsonify({"status": "Model unloaded", "memory_freed": True})
|
233 |
|
234 |
@app.route('/')
|
|
|
238 |
"status": "online",
|
239 |
"endpoints": {
|
240 |
"POST /chat": "Single-response chat",
|
241 |
+
"POST /stream_chat": "Streaming chat",
|
242 |
"GET /health": "Service health check",
|
243 |
+
"POST /unload": "Unload model"
|
244 |
},
|
245 |
"config": {
|
246 |
"model": MODEL_NAME,
|
|
|
251 |
})
|
252 |
|
253 |
if __name__ == '__main__':
|
|
|
254 |
if os.getenv('PRELOAD_MODEL', 'false').lower() == 'true':
|
255 |
load_model()
|
|
|
256 |
port = int(os.environ.get("PORT", 5000))
|
257 |
+
app.run(host='0.0.0.0', port=port)
|