Update app.py
Browse files
app.py
CHANGED
@@ -6,21 +6,12 @@ import time
|
|
6 |
import logging
|
7 |
import threading
|
8 |
import queue
|
9 |
-
import json
|
10 |
-
import gc
|
11 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
12 |
|
13 |
# Set up logging
|
14 |
-
logging.basicConfig(
|
15 |
-
level=logging.INFO,
|
16 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
17 |
-
datefmt='%Y-%m-%d %H:%M:%S'
|
18 |
-
)
|
19 |
logger = logging.getLogger(__name__)
|
20 |
|
21 |
-
# Print startup banner for visibility in logs
|
22 |
-
print("\n===== Application Startup at", time.strftime("%Y-%m-%d %H:%M:%S"), "=====\n")
|
23 |
-
|
24 |
# Fix caching issue on Hugging Face Spaces
|
25 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
|
26 |
os.environ["HF_HOME"] = "/tmp"
|
@@ -36,110 +27,41 @@ logger.info(f"Using device: {device}")
|
|
36 |
tokenizer = None
|
37 |
model = None
|
38 |
|
39 |
-
# Check available system resources
|
40 |
-
def log_system_info():
|
41 |
-
# Basic system info
|
42 |
-
logger.info(f"Python version: {os.sys.version}")
|
43 |
-
|
44 |
-
# CPU info
|
45 |
-
import multiprocessing
|
46 |
-
logger.info(f"CPU cores: {multiprocessing.cpu_count()}")
|
47 |
-
|
48 |
-
# Memory info
|
49 |
-
try:
|
50 |
-
import psutil
|
51 |
-
mem = psutil.virtual_memory()
|
52 |
-
logger.info(f"Memory: Total={mem.total/1e9:.1f}GB, Available={mem.available/1e9:.1f}GB ({mem.percent}% used)")
|
53 |
-
except ImportError:
|
54 |
-
logger.info("psutil not installed, skipping detailed memory info")
|
55 |
-
|
56 |
-
# PyTorch info
|
57 |
-
logger.info(f"PyTorch version: {torch.__version__}")
|
58 |
-
logger.info(f"CUDA available: {torch.cuda.is_available()}")
|
59 |
-
if torch.cuda.is_available():
|
60 |
-
logger.info(f"CUDA version: {torch.version.cuda}")
|
61 |
-
logger.info(f"GPU: {torch.cuda.get_device_name(0)}")
|
62 |
-
|
63 |
# Initialize models once on startup
|
64 |
def initialize_models():
|
65 |
global tokenizer, model
|
66 |
try:
|
67 |
logger.info("Loading language model...")
|
68 |
-
|
69 |
-
|
70 |
-
# You can change the model here if needed
|
71 |
-
model_name = "Qwen/Qwen2.5-1.5B-Instruct" # Good balance of quality and speed for CPU
|
72 |
-
|
73 |
-
# Load tokenizer with caching
|
74 |
-
logger.info(f"Loading tokenizer: {model_name}")
|
75 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
76 |
-
model_name,
|
77 |
-
use_fast=True, # Use the fast tokenizers when available
|
78 |
-
local_files_only=False # Allow downloading if not cached
|
79 |
-
)
|
80 |
-
|
81 |
-
# Free up memory before loading model
|
82 |
-
gc.collect()
|
83 |
-
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
84 |
-
|
85 |
-
# Load model with optimizations for CPU
|
86 |
-
logger.info(f"Loading model: {model_name}")
|
87 |
-
|
88 |
-
# Set lower precision for CPU to reduce memory usage
|
89 |
-
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
90 |
-
|
91 |
model = AutoModelForCausalLM.from_pretrained(
|
92 |
model_name,
|
93 |
-
torch_dtype=
|
94 |
-
|
95 |
-
|
96 |
)
|
97 |
|
98 |
-
# Handle padding tokens
|
99 |
if tokenizer.pad_token is None:
|
100 |
-
logger.info("Setting pad token to EOS token")
|
101 |
tokenizer.pad_token = tokenizer.eos_token
|
102 |
model.config.pad_token_id = model.config.eos_token_id
|
103 |
|
104 |
-
# Set up model configuration for better generation
|
105 |
-
model.config.do_sample = True # Enable sampling
|
106 |
-
model.config.temperature = 0.7 # Default temperature
|
107 |
-
model.config.top_p = 0.9 # Default top_p
|
108 |
-
|
109 |
logger.info("Models initialized successfully")
|
110 |
except Exception as e:
|
111 |
logger.error(f"Error initializing models: {str(e)}")
|
112 |
raise
|
113 |
|
114 |
-
# TextStreamer class for token-by-token generation
|
115 |
-
class TextStreamer:
|
116 |
-
def __init__(self, tokenizer, queue):
|
117 |
-
self.tokenizer = tokenizer
|
118 |
-
self.queue = queue
|
119 |
-
self.current_tokens = []
|
120 |
-
|
121 |
-
def put(self, token_ids):
|
122 |
-
self.current_tokens.extend(token_ids.tolist())
|
123 |
-
text = self.tokenizer.decode(self.current_tokens, skip_special_tokens=True)
|
124 |
-
self.queue.put(text)
|
125 |
-
|
126 |
-
def end(self):
|
127 |
-
pass
|
128 |
-
|
129 |
# Function to simulate "thinking" process
|
130 |
def thinking_process(message, result_queue):
|
131 |
"""
|
132 |
-
This function simulates a thinking process and puts the result in the queue
|
133 |
-
It includes both an explicit thinking stage and then a generation stage.
|
134 |
"""
|
135 |
try:
|
136 |
-
# Simulate
|
137 |
logger.info(f"Thinking about: '{message}'")
|
138 |
|
139 |
-
# Create
|
140 |
prompt = f"""<|im_start|>system
|
141 |
-
You are a helpful, friendly, and thoughtful AI assistant.
|
142 |
-
Let's approach the user's request step by step.
|
143 |
<|im_end|>
|
144 |
<|im_start|>user
|
145 |
{message}<|im_end|>
|
@@ -147,31 +69,23 @@ Let's approach the user's request step by step.
|
|
147 |
"""
|
148 |
|
149 |
# Handle inputs
|
150 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=
|
151 |
-
inputs = {k: v.to(
|
152 |
|
153 |
# Generate answer with streaming
|
154 |
streamer = TextStreamer(tokenizer, result_queue)
|
155 |
|
156 |
-
#
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
do_sample=True,
|
168 |
-
streamer=streamer,
|
169 |
-
num_beams=1, # Reduced from 2
|
170 |
-
repetition_penalty=1.2
|
171 |
-
)
|
172 |
-
except Exception as e:
|
173 |
-
logger.error(f"Model generation error: {str(e)}")
|
174 |
-
result_queue.put(f"\n\nI apologize, but I encountered an error while processing your request.")
|
175 |
|
176 |
# Signal generation is complete
|
177 |
result_queue.put(None)
|
@@ -182,54 +96,42 @@ Let's approach the user's request step by step.
|
|
182 |
# Signal generation is complete
|
183 |
result_queue.put(None)
|
184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
# API route for home page
|
186 |
@app.route('/')
|
187 |
def home():
|
188 |
-
return jsonify({"message": "AI Chat API is running!"
|
189 |
-
|
190 |
-
# Health check endpoint
|
191 |
-
@app.route('/health')
|
192 |
-
def health():
|
193 |
-
if model is None or tokenizer is None:
|
194 |
-
return jsonify({"status": "initializing"}), 503
|
195 |
-
return jsonify({"status": "healthy"})
|
196 |
|
197 |
# API route for streaming chat responses
|
198 |
-
@app.route('/chat', methods=['POST'
|
199 |
def chat():
|
200 |
-
|
201 |
-
|
202 |
-
return jsonify({"error": "Models are still initializing. Please try again shortly."}), 503
|
203 |
-
|
204 |
-
# Handle both POST JSON and GET query parameters for flexibility
|
205 |
-
if request.method == 'POST':
|
206 |
-
try:
|
207 |
-
data = request.get_json()
|
208 |
-
message = data.get("message", "")
|
209 |
-
except:
|
210 |
-
# If JSON parsing fails, try form data
|
211 |
-
message = request.form.get("message", "")
|
212 |
-
else: # GET
|
213 |
-
message = request.args.get("message", "")
|
214 |
|
215 |
if not message:
|
216 |
return jsonify({"error": "Message is required"}), 400
|
217 |
|
218 |
try:
|
219 |
def generate():
|
220 |
-
# Signal the start of streaming with headers
|
221 |
-
yield "retry: 1000\n"
|
222 |
-
yield "event: message\n"
|
223 |
-
|
224 |
-
# Show thinking indicator
|
225 |
-
yield f"data: [Thinking...]\n\n"
|
226 |
-
|
227 |
# Create a queue for communication between threads
|
228 |
result_queue = queue.Queue()
|
229 |
|
230 |
# Start thinking in a separate thread
|
231 |
thread = threading.Thread(target=thinking_process, args=(message, result_queue))
|
232 |
-
thread.daemon = True # Make thread die when main thread exits
|
233 |
thread.start()
|
234 |
|
235 |
# Stream results as they become available
|
@@ -245,8 +147,7 @@ def chat():
|
|
245 |
new_part = result[len(previous_text):]
|
246 |
previous_text = result
|
247 |
if new_part:
|
248 |
-
yield f"data: {
|
249 |
-
time.sleep(0.01) # Small delay for more natural typing effect
|
250 |
|
251 |
except queue.Empty:
|
252 |
# Timeout occurred
|
@@ -255,15 +156,7 @@ def chat():
|
|
255 |
|
256 |
yield "data: [DONE]\n\n"
|
257 |
|
258 |
-
return Response(
|
259 |
-
stream_with_context(generate()),
|
260 |
-
mimetype='text/event-stream',
|
261 |
-
headers={
|
262 |
-
'Cache-Control': 'no-cache',
|
263 |
-
'Connection': 'keep-alive',
|
264 |
-
'X-Accel-Buffering': 'no' # Disable buffering for Nginx
|
265 |
-
}
|
266 |
-
)
|
267 |
|
268 |
except Exception as e:
|
269 |
logger.error(f"Error processing chat request: {str(e)}")
|
@@ -272,10 +165,6 @@ def chat():
|
|
272 |
# Simple API for non-streaming chat (fallback)
|
273 |
@app.route('/chat-simple', methods=['POST'])
|
274 |
def chat_simple():
|
275 |
-
# Check if models are loaded
|
276 |
-
if model is None or tokenizer is None:
|
277 |
-
return jsonify({"error": "Models are still initializing. Please try again shortly."}), 503
|
278 |
-
|
279 |
data = request.get_json()
|
280 |
message = data.get("message", "")
|
281 |
|
@@ -283,29 +172,29 @@ def chat_simple():
|
|
283 |
return jsonify({"error": "Message is required"}), 400
|
284 |
|
285 |
try:
|
286 |
-
# Create prompt with system message
|
287 |
prompt = f"""<|im_start|>system
|
288 |
-
You are a helpful assistant.
|
289 |
<|im_end|>
|
290 |
<|im_start|>user
|
291 |
{message}<|im_end|>
|
292 |
<|im_start|>assistant
|
293 |
"""
|
294 |
|
295 |
-
# Handle inputs
|
296 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=
|
297 |
-
inputs = {k: v.to(
|
298 |
-
|
299 |
-
# Generate answer
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
|
310 |
# Decode and format answer
|
311 |
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
@@ -322,16 +211,9 @@ You are a helpful assistant.
|
|
322 |
|
323 |
if __name__ == "__main__":
|
324 |
try:
|
325 |
-
#
|
326 |
-
flask_thread = threading.Thread(target=lambda: app.run(host="0.0.0.0", port=7860))
|
327 |
-
flask_thread.daemon = True
|
328 |
-
flask_thread.start()
|
329 |
-
|
330 |
-
# Initialize models in the main thread
|
331 |
-
logger.info("Starting Flask application")
|
332 |
initialize_models()
|
333 |
-
|
334 |
-
|
335 |
-
flask_thread.join()
|
336 |
except Exception as e:
|
337 |
logger.critical(f"Failed to start application: {str(e)}")
|
|
|
6 |
import logging
|
7 |
import threading
|
8 |
import queue
|
|
|
|
|
9 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
10 |
|
11 |
# Set up logging
|
12 |
+
logging.basicConfig(level=logging.INFO)
|
|
|
|
|
|
|
|
|
13 |
logger = logging.getLogger(__name__)
|
14 |
|
|
|
|
|
|
|
15 |
# Fix caching issue on Hugging Face Spaces
|
16 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
|
17 |
os.environ["HF_HOME"] = "/tmp"
|
|
|
27 |
tokenizer = None
|
28 |
model = None
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
# Initialize models once on startup
|
31 |
def initialize_models():
|
32 |
global tokenizer, model
|
33 |
try:
|
34 |
logger.info("Loading language model...")
|
35 |
+
model_name = "Qwen/Qwen2.5-1.5B-Instruct"
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
model = AutoModelForCausalLM.from_pretrained(
|
38 |
model_name,
|
39 |
+
torch_dtype=torch.float16, # Use float16 for lower memory on CPU
|
40 |
+
device_map="cpu", # Explicitly set to CPU
|
41 |
+
low_cpu_mem_usage=True # Optimize memory loading
|
42 |
)
|
43 |
|
|
|
44 |
if tokenizer.pad_token is None:
|
|
|
45 |
tokenizer.pad_token = tokenizer.eos_token
|
46 |
model.config.pad_token_id = model.config.eos_token_id
|
47 |
|
|
|
|
|
|
|
|
|
|
|
48 |
logger.info("Models initialized successfully")
|
49 |
except Exception as e:
|
50 |
logger.error(f"Error initializing models: {str(e)}")
|
51 |
raise
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
# Function to simulate "thinking" process
|
54 |
def thinking_process(message, result_queue):
|
55 |
"""
|
56 |
+
This function simulates a thinking process and puts the result in the queue
|
|
|
57 |
"""
|
58 |
try:
|
59 |
+
# Simulate thinking process
|
60 |
logger.info(f"Thinking about: '{message}'")
|
61 |
|
62 |
+
# Create prompt with system message
|
63 |
prompt = f"""<|im_start|>system
|
64 |
+
You are a helpful, friendly, and thoughtful AI assistant. Think carefully and provide informative, detailed responses.
|
|
|
65 |
<|im_end|>
|
66 |
<|im_start|>user
|
67 |
{message}<|im_end|>
|
|
|
69 |
"""
|
70 |
|
71 |
# Handle inputs
|
72 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
|
73 |
+
inputs = {k: v.to('cpu') for k, v in inputs.items()}
|
74 |
|
75 |
# Generate answer with streaming
|
76 |
streamer = TextStreamer(tokenizer, result_queue)
|
77 |
|
78 |
+
# Generate response
|
79 |
+
model.generate(
|
80 |
+
**inputs,
|
81 |
+
max_new_tokens=512,
|
82 |
+
temperature=0.7,
|
83 |
+
top_p=0.9,
|
84 |
+
do_sample=True,
|
85 |
+
streamer=streamer,
|
86 |
+
num_beams=1,
|
87 |
+
no_repeat_ngram_size=3
|
88 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
# Signal generation is complete
|
91 |
result_queue.put(None)
|
|
|
96 |
# Signal generation is complete
|
97 |
result_queue.put(None)
|
98 |
|
99 |
+
# TextStreamer class for token-by-token generation
|
100 |
+
class TextStreamer:
|
101 |
+
def __init__(self, tokenizer, queue):
|
102 |
+
self.tokenizer = tokenizer
|
103 |
+
self.queue = queue
|
104 |
+
self.current_tokens = []
|
105 |
+
|
106 |
+
def put(self, token_ids):
|
107 |
+
self.current_tokens.extend(token_ids.tolist())
|
108 |
+
text = self.tokenizer.decode(self.current_tokens, skip_special_tokens=True)
|
109 |
+
self.queue.put(text)
|
110 |
+
|
111 |
+
def end(self):
|
112 |
+
pass
|
113 |
+
|
114 |
# API route for home page
|
115 |
@app.route('/')
|
116 |
def home():
|
117 |
+
return jsonify({"message": "AI Chat API is running!"})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
# API route for streaming chat responses
|
120 |
+
@app.route('/chat', methods=['POST'])
|
121 |
def chat():
|
122 |
+
data = request.get_json()
|
123 |
+
message = data.get("message", "")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
if not message:
|
126 |
return jsonify({"error": "Message is required"}), 400
|
127 |
|
128 |
try:
|
129 |
def generate():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
# Create a queue for communication between threads
|
131 |
result_queue = queue.Queue()
|
132 |
|
133 |
# Start thinking in a separate thread
|
134 |
thread = threading.Thread(target=thinking_process, args=(message, result_queue))
|
|
|
135 |
thread.start()
|
136 |
|
137 |
# Stream results as they become available
|
|
|
147 |
new_part = result[len(previous_text):]
|
148 |
previous_text = result
|
149 |
if new_part:
|
150 |
+
yield f"data: {new_part}\n\n"
|
|
|
151 |
|
152 |
except queue.Empty:
|
153 |
# Timeout occurred
|
|
|
156 |
|
157 |
yield "data: [DONE]\n\n"
|
158 |
|
159 |
+
return Response(stream_with_context(generate()), mimetype='text/event-stream')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
except Exception as e:
|
162 |
logger.error(f"Error processing chat request: {str(e)}")
|
|
|
165 |
# Simple API for non-streaming chat (fallback)
|
166 |
@app.route('/chat-simple', methods=['POST'])
|
167 |
def chat_simple():
|
|
|
|
|
|
|
|
|
168 |
data = request.get_json()
|
169 |
message = data.get("message", "")
|
170 |
|
|
|
172 |
return jsonify({"error": "Message is required"}), 400
|
173 |
|
174 |
try:
|
175 |
+
# Create prompt with system message
|
176 |
prompt = f"""<|im_start|>system
|
177 |
+
You are a helpful, friendly, and thoughtful AI assistant. Think carefully and provide informative, detailed responses.
|
178 |
<|im_end|>
|
179 |
<|im_start|>user
|
180 |
{message}<|im_end|>
|
181 |
<|im_start|>assistant
|
182 |
"""
|
183 |
|
184 |
+
# Handle inputs
|
185 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
|
186 |
+
inputs = {k: v.to('cpu') for k, v in inputs.items()}
|
187 |
+
|
188 |
+
# Generate answer
|
189 |
+
output = model.generate(
|
190 |
+
**inputs,
|
191 |
+
max_new_tokens=512,
|
192 |
+
temperature=0.7,
|
193 |
+
top_p=0.9,
|
194 |
+
do_sample=True,
|
195 |
+
num_beams=1,
|
196 |
+
no_repeat_ngram_size=3
|
197 |
+
)
|
198 |
|
199 |
# Decode and format answer
|
200 |
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
211 |
|
212 |
if __name__ == "__main__":
|
213 |
try:
|
214 |
+
# Initialize models at startup
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
initialize_models()
|
216 |
+
logger.info("Starting Flask application")
|
217 |
+
app.run(host="0.0.0.0", port=7860)
|
|
|
218 |
except Exception as e:
|
219 |
logger.critical(f"Failed to start application: {str(e)}")
|