Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
import os
|
2 |
import time
|
3 |
import json
|
4 |
-
import
|
5 |
from pathlib import Path
|
6 |
from flask import Flask, request, jsonify, Response
|
7 |
from flask_cors import CORS
|
8 |
import torch
|
9 |
-
import gc # For garbage collection
|
10 |
|
11 |
# Create cache directory if not exists
|
12 |
cache_dir = Path(os.getenv('TRANSFORMERS_CACHE', '/app/cache'))
|
@@ -16,8 +15,8 @@ app = Flask(__name__)
|
|
16 |
CORS(app) # Allow cross-origin requests
|
17 |
|
18 |
# Model configuration
|
19 |
-
# Use DeepSeek R1 Distill Qwen
|
20 |
-
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Qwen-
|
21 |
MAX_NEW_TOKENS = 256
|
22 |
DEVICE = "cpu" if not torch.cuda.is_available() else "cuda"
|
23 |
|
@@ -47,6 +46,7 @@ def load_model():
|
|
47 |
bnb_4bit_use_double_quant=True
|
48 |
)
|
49 |
else:
|
|
|
50 |
quantization_config = None
|
51 |
|
52 |
# Load tokenizer
|
@@ -60,17 +60,40 @@ def load_model():
|
|
60 |
hf_token = os.environ.get("HF_TOKEN")
|
61 |
token_kwargs = {"token": hf_token} if hf_token else {}
|
62 |
|
63 |
-
#
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
print("β
Model loaded successfully!")
|
76 |
return True
|
@@ -88,32 +111,25 @@ def stream_generator(prompt):
|
|
88 |
# Thinking phases
|
89 |
thinking_steps = [
|
90 |
"π Analyzing your question...",
|
91 |
-
"π§
|
92 |
-
"π‘ Formulating response..."
|
93 |
-
"π Verifying information..."
|
94 |
]
|
95 |
|
96 |
-
# Stream thinking steps
|
97 |
for step in thinking_steps:
|
98 |
yield json.dumps({"type": "thinking", "content": step}) + '\n'
|
99 |
-
time.sleep(0.
|
100 |
|
101 |
# Prepare streaming generation
|
102 |
try:
|
103 |
-
# Format prompt for the model
|
104 |
-
|
105 |
-
formatted_prompt = f"<s>[INST] {prompt} [/INST]"
|
106 |
-
elif "deepseek" in MODEL_NAME.lower():
|
107 |
-
formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
|
108 |
-
else:
|
109 |
-
formatted_prompt = prompt
|
110 |
|
111 |
inputs = tokenizer(formatted_prompt, return_tensors="pt")
|
112 |
if DEVICE == "cuda":
|
113 |
inputs = inputs.to("cuda")
|
114 |
|
115 |
-
# Use
|
116 |
-
# Start generation
|
117 |
with torch.no_grad():
|
118 |
generated_ids = model.generate(
|
119 |
**inputs,
|
@@ -128,9 +144,9 @@ def stream_generator(prompt):
|
|
128 |
# Get output sequence
|
129 |
output_ids = generated_ids.sequences[0][len(inputs.input_ids[0]):]
|
130 |
|
131 |
-
# Stream in chunks for
|
132 |
full_output = ""
|
133 |
-
chunk_size =
|
134 |
for i in range(0, len(output_ids), chunk_size):
|
135 |
chunk_ids = output_ids[i:i+chunk_size]
|
136 |
chunk_text = tokenizer.decode(chunk_ids, skip_special_tokens=True)
|
@@ -141,8 +157,8 @@ def stream_generator(prompt):
|
|
141 |
"content": chunk_text
|
142 |
}) + '\n'
|
143 |
|
144 |
-
#
|
145 |
-
time.sleep(0.
|
146 |
|
147 |
except Exception as e:
|
148 |
import traceback
|
@@ -156,7 +172,7 @@ def stream_generator(prompt):
|
|
156 |
# Signal completion
|
157 |
yield json.dumps({"type": "complete"}) + '\n'
|
158 |
|
159 |
-
# Clean up memory
|
160 |
if DEVICE == "cuda":
|
161 |
torch.cuda.empty_cache()
|
162 |
gc.collect()
|
@@ -192,13 +208,8 @@ def chat():
|
|
192 |
return jsonify({"error": "Empty prompt"}), 400
|
193 |
|
194 |
try:
|
195 |
-
# Format prompt for
|
196 |
-
|
197 |
-
formatted_prompt = f"<s>[INST] {prompt} [/INST]"
|
198 |
-
elif "deepseek" in MODEL_NAME.lower():
|
199 |
-
formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
|
200 |
-
else:
|
201 |
-
formatted_prompt = prompt
|
202 |
|
203 |
inputs = tokenizer(formatted_prompt, return_tensors="pt")
|
204 |
if DEVICE == "cuda":
|
@@ -231,6 +242,14 @@ def chat():
|
|
231 |
@app.route('/health', methods=['GET'])
|
232 |
def health_check():
|
233 |
model_loaded = tokenizer is not None and model is not None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
try:
|
236 |
# Check if we need to load the model
|
@@ -241,34 +260,56 @@ def health_check():
|
|
241 |
|
242 |
status = {
|
243 |
"status": "ok" if model_loaded else "waiting",
|
|
|
244 |
"model_loaded": model_loaded,
|
245 |
"device": DEVICE,
|
246 |
"cache_dir": str(cache_dir),
|
247 |
"max_tokens": MAX_NEW_TOKENS,
|
248 |
-
"memory_usage":
|
249 |
-
if torch.cuda.is_available() else "CPU"
|
250 |
}
|
251 |
return jsonify(status)
|
252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
@app.route('/')
|
254 |
def home():
|
255 |
return jsonify({
|
256 |
-
"service": "DeepSeek Chat API",
|
257 |
"status": "online",
|
258 |
"endpoints": {
|
259 |
"POST /chat": "Single-response chat",
|
260 |
"POST /stream_chat": "Streaming chat with thinking steps",
|
261 |
-
"GET /health": "Service health check"
|
|
|
262 |
},
|
263 |
"config": {
|
264 |
"model": MODEL_NAME,
|
265 |
"max_tokens": MAX_NEW_TOKENS,
|
|
|
266 |
"cache_location": str(cache_dir)
|
267 |
}
|
268 |
})
|
269 |
|
270 |
if __name__ == '__main__':
|
271 |
-
# Load model at startup
|
272 |
if os.getenv('PRELOAD_MODEL', 'false').lower() == 'true':
|
273 |
load_model()
|
274 |
|
|
|
1 |
import os
|
2 |
import time
|
3 |
import json
|
4 |
+
import gc # For garbage collection
|
5 |
from pathlib import Path
|
6 |
from flask import Flask, request, jsonify, Response
|
7 |
from flask_cors import CORS
|
8 |
import torch
|
|
|
9 |
|
10 |
# Create cache directory if not exists
|
11 |
cache_dir = Path(os.getenv('TRANSFORMERS_CACHE', '/app/cache'))
|
|
|
15 |
CORS(app) # Allow cross-origin requests
|
16 |
|
17 |
# Model configuration
|
18 |
+
# Use DeepSeek R1 Distill Qwen 1.5B model (much lighter than 7B)
|
19 |
+
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
20 |
MAX_NEW_TOKENS = 256
|
21 |
DEVICE = "cpu" if not torch.cuda.is_available() else "cuda"
|
22 |
|
|
|
46 |
bnb_4bit_use_double_quant=True
|
47 |
)
|
48 |
else:
|
49 |
+
# For CPU, we'll use a different optimization approach
|
50 |
quantization_config = None
|
51 |
|
52 |
# Load tokenizer
|
|
|
60 |
hf_token = os.environ.get("HF_TOKEN")
|
61 |
token_kwargs = {"token": hf_token} if hf_token else {}
|
62 |
|
63 |
+
# Additional memory optimization settings for low resource environments
|
64 |
+
if DEVICE == "cpu":
|
65 |
+
# Load model with 8-bit quantization for CPU
|
66 |
+
try:
|
67 |
+
# Try int8 quantization for CPU
|
68 |
+
model = AutoModelForCausalLM.from_pretrained(
|
69 |
+
MODEL_NAME,
|
70 |
+
cache_dir=str(cache_dir),
|
71 |
+
load_in_8bit=True,
|
72 |
+
low_cpu_mem_usage=True,
|
73 |
+
trust_remote_code=True,
|
74 |
+
**token_kwargs
|
75 |
+
)
|
76 |
+
except Exception as e:
|
77 |
+
print(f"8-bit quantization failed, falling back to standard loading: {str(e)}")
|
78 |
+
model = AutoModelForCausalLM.from_pretrained(
|
79 |
+
MODEL_NAME,
|
80 |
+
cache_dir=str(cache_dir),
|
81 |
+
low_cpu_mem_usage=True,
|
82 |
+
trust_remote_code=True,
|
83 |
+
**token_kwargs
|
84 |
+
)
|
85 |
+
else:
|
86 |
+
# Load model with 4-bit quantization for CUDA
|
87 |
+
model = AutoModelForCausalLM.from_pretrained(
|
88 |
+
MODEL_NAME,
|
89 |
+
cache_dir=str(cache_dir),
|
90 |
+
device_map="auto",
|
91 |
+
torch_dtype=torch.float16,
|
92 |
+
quantization_config=quantization_config,
|
93 |
+
low_cpu_mem_usage=True,
|
94 |
+
trust_remote_code=True,
|
95 |
+
**token_kwargs
|
96 |
+
)
|
97 |
|
98 |
print("β
Model loaded successfully!")
|
99 |
return True
|
|
|
111 |
# Thinking phases
|
112 |
thinking_steps = [
|
113 |
"π Analyzing your question...",
|
114 |
+
"π§ Processing...",
|
115 |
+
"π‘ Formulating response..."
|
|
|
116 |
]
|
117 |
|
118 |
+
# Stream thinking steps (fewer steps, faster timing for lighter model)
|
119 |
for step in thinking_steps:
|
120 |
yield json.dumps({"type": "thinking", "content": step}) + '\n'
|
121 |
+
time.sleep(0.5) # Reduced timing for faster response
|
122 |
|
123 |
# Prepare streaming generation
|
124 |
try:
|
125 |
+
# Format prompt for the model (DeepSeek specific)
|
126 |
+
formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
inputs = tokenizer(formatted_prompt, return_tensors="pt")
|
129 |
if DEVICE == "cuda":
|
130 |
inputs = inputs.to("cuda")
|
131 |
|
132 |
+
# Use memory efficient approach
|
|
|
133 |
with torch.no_grad():
|
134 |
generated_ids = model.generate(
|
135 |
**inputs,
|
|
|
144 |
# Get output sequence
|
145 |
output_ids = generated_ids.sequences[0][len(inputs.input_ids[0]):]
|
146 |
|
147 |
+
# Stream in slightly larger chunks for better performance
|
148 |
full_output = ""
|
149 |
+
chunk_size = 5 # Increased number of tokens per chunk
|
150 |
for i in range(0, len(output_ids), chunk_size):
|
151 |
chunk_ids = output_ids[i:i+chunk_size]
|
152 |
chunk_text = tokenizer.decode(chunk_ids, skip_special_tokens=True)
|
|
|
157 |
"content": chunk_text
|
158 |
}) + '\n'
|
159 |
|
160 |
+
# Smaller delay for faster streaming
|
161 |
+
time.sleep(0.03)
|
162 |
|
163 |
except Exception as e:
|
164 |
import traceback
|
|
|
172 |
# Signal completion
|
173 |
yield json.dumps({"type": "complete"}) + '\n'
|
174 |
|
175 |
+
# Clean up memory aggressively
|
176 |
if DEVICE == "cuda":
|
177 |
torch.cuda.empty_cache()
|
178 |
gc.collect()
|
|
|
208 |
return jsonify({"error": "Empty prompt"}), 400
|
209 |
|
210 |
try:
|
211 |
+
# Format prompt for DeepSeek model
|
212 |
+
formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
inputs = tokenizer(formatted_prompt, return_tensors="pt")
|
215 |
if DEVICE == "cuda":
|
|
|
242 |
@app.route('/health', methods=['GET'])
|
243 |
def health_check():
|
244 |
model_loaded = tokenizer is not None and model is not None
|
245 |
+
memory_info = "N/A"
|
246 |
+
|
247 |
+
# Get memory usage stats
|
248 |
+
if torch.cuda.is_available():
|
249 |
+
memory_info = f"{torch.cuda.memory_allocated()/1024**2:.2f}MB / {torch.cuda.get_device_properties(0).total_memory/1024**2:.2f}MB"
|
250 |
+
else:
|
251 |
+
import psutil
|
252 |
+
memory_info = f"{psutil.virtual_memory().used/1024**3:.2f}GB / {psutil.virtual_memory().total/1024**3:.2f}GB"
|
253 |
|
254 |
try:
|
255 |
# Check if we need to load the model
|
|
|
260 |
|
261 |
status = {
|
262 |
"status": "ok" if model_loaded else "waiting",
|
263 |
+
"model": MODEL_NAME,
|
264 |
"model_loaded": model_loaded,
|
265 |
"device": DEVICE,
|
266 |
"cache_dir": str(cache_dir),
|
267 |
"max_tokens": MAX_NEW_TOKENS,
|
268 |
+
"memory_usage": memory_info
|
|
|
269 |
}
|
270 |
return jsonify(status)
|
271 |
|
272 |
+
@app.route('/unload', methods=['POST'])
|
273 |
+
def unload_model():
|
274 |
+
"""Endpoint to manually unload model and free memory"""
|
275 |
+
global model, tokenizer
|
276 |
+
|
277 |
+
if model is not None:
|
278 |
+
del model
|
279 |
+
model = None
|
280 |
+
|
281 |
+
if tokenizer is not None:
|
282 |
+
del tokenizer
|
283 |
+
tokenizer = None
|
284 |
+
|
285 |
+
# Force garbage collection
|
286 |
+
if torch.cuda.is_available():
|
287 |
+
torch.cuda.empty_cache()
|
288 |
+
gc.collect()
|
289 |
+
|
290 |
+
return jsonify({"status": "Model unloaded", "memory_freed": True})
|
291 |
+
|
292 |
@app.route('/')
|
293 |
def home():
|
294 |
return jsonify({
|
295 |
+
"service": "DeepSeek-1.5B Chat API",
|
296 |
"status": "online",
|
297 |
"endpoints": {
|
298 |
"POST /chat": "Single-response chat",
|
299 |
"POST /stream_chat": "Streaming chat with thinking steps",
|
300 |
+
"GET /health": "Service health check",
|
301 |
+
"POST /unload": "Unload model to free memory"
|
302 |
},
|
303 |
"config": {
|
304 |
"model": MODEL_NAME,
|
305 |
"max_tokens": MAX_NEW_TOKENS,
|
306 |
+
"device": DEVICE,
|
307 |
"cache_location": str(cache_dir)
|
308 |
}
|
309 |
})
|
310 |
|
311 |
if __name__ == '__main__':
|
312 |
+
# Load model at startup only if explicitly requested
|
313 |
if os.getenv('PRELOAD_MODEL', 'false').lower() == 'true':
|
314 |
load_model()
|
315 |
|