Update app.py
Browse files
app.py
CHANGED
@@ -1,221 +1,289 @@
|
|
|
|
|
|
1 |
import os
|
2 |
-
import time
|
3 |
import torch
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
import
|
|
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
logging.
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
MAX_NEW_TOKENS = 512
|
19 |
-
TEMPERATURE = 0.7
|
20 |
-
TOP_P = 0.9
|
21 |
-
THINKING_STEPS = 3 # Number of thinking steps
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
25 |
tokenizer = None
|
|
|
26 |
|
27 |
-
#
|
28 |
-
def
|
29 |
-
global
|
30 |
-
|
31 |
-
if model is not None and tokenizer is not None:
|
32 |
-
return
|
33 |
-
|
34 |
-
print(f"Loading model: {MODEL_ID}")
|
35 |
-
|
36 |
try:
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
tokenizer = AutoTokenizer.from_pretrained(
|
39 |
-
|
40 |
-
use_fast=True
|
41 |
-
trust_remote_code=True
|
42 |
)
|
43 |
|
44 |
-
# Load model with
|
|
|
45 |
model = AutoModelForCausalLM.from_pretrained(
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
50 |
)
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
except Exception as e:
|
54 |
-
|
55 |
-
print(f"Error loading model: {str(e)}")
|
56 |
-
print(traceback.format_exc())
|
57 |
raise
|
58 |
|
59 |
-
#
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
# Generate
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
84 |
do_sample=True,
|
85 |
-
|
|
|
|
|
|
|
86 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
91 |
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
96 |
-
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
answer = tokenizer.decode(new_tokens, skip_special_tokens=True)
|
113 |
|
114 |
-
# Return thinking process and final answer
|
115 |
-
return {
|
116 |
-
"thinking": thinking_output,
|
117 |
-
"answer": answer,
|
118 |
-
"full_response": thinking_output + "\n\nBased on this thinking, my final answer is: " + answer
|
119 |
-
}
|
120 |
-
|
121 |
-
# API endpoint for chat
|
122 |
-
@app.route('/api/chat', methods=['POST'])
|
123 |
-
def chat():
|
124 |
try:
|
125 |
-
#
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
132 |
|
133 |
-
|
134 |
-
|
|
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
'time_taken': round(end_time - start_time, 2)
|
143 |
-
}
|
144 |
|
145 |
-
#
|
146 |
-
if
|
147 |
-
|
148 |
-
|
149 |
-
return jsonify(result)
|
150 |
-
|
151 |
-
except Exception as e:
|
152 |
-
import traceback
|
153 |
-
print(f"Error in chat endpoint: {str(e)}")
|
154 |
-
print(traceback.format_exc())
|
155 |
-
return jsonify({'error': str(e)}), 500
|
156 |
-
|
157 |
-
# Simple health check endpoint
|
158 |
-
@app.route('/health', methods=['GET'])
|
159 |
-
def health_check():
|
160 |
-
return jsonify({'status': 'ok'})
|
161 |
-
|
162 |
-
# Gradio Web UI
|
163 |
-
def create_ui():
|
164 |
-
with gr.Blocks() as demo:
|
165 |
-
gr.Markdown("# AI Assistant with Step-by-Step Thinking")
|
166 |
-
|
167 |
-
with gr.Row():
|
168 |
-
with gr.Column():
|
169 |
-
input_text = gr.Textbox(
|
170 |
-
label="Your question",
|
171 |
-
placeholder="Ask me anything...",
|
172 |
-
lines=3
|
173 |
-
)
|
174 |
-
|
175 |
-
with gr.Row():
|
176 |
-
submit_btn = gr.Button("Submit")
|
177 |
-
clear_btn = gr.Button("Clear")
|
178 |
-
|
179 |
-
show_thinking = gr.Checkbox(label="Show thinking steps", value=True)
|
180 |
-
|
181 |
-
with gr.Column():
|
182 |
-
thinking_output = gr.Markdown(label="Thinking Process", visible=True)
|
183 |
-
answer_output = gr.Markdown(label="Final Answer")
|
184 |
-
|
185 |
-
def respond(question, show_thinking):
|
186 |
-
if not question.strip():
|
187 |
-
return "", "Please enter a question"
|
188 |
-
|
189 |
-
# Ensure model is loaded
|
190 |
-
if model is None or tokenizer is None:
|
191 |
-
load_model_and_tokenizer()
|
192 |
-
|
193 |
-
response = generate_with_thinking(question)
|
194 |
-
|
195 |
-
if show_thinking:
|
196 |
-
return response["thinking"], response["answer"]
|
197 |
-
else:
|
198 |
-
return "", response["answer"]
|
199 |
-
|
200 |
-
submit_btn.click(
|
201 |
-
respond,
|
202 |
-
inputs=[input_text, show_thinking],
|
203 |
-
outputs=[thinking_output, answer_output]
|
204 |
-
)
|
205 |
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
)
|
211 |
-
|
212 |
-
return demo
|
213 |
|
214 |
-
# Create Gradio UI and launch the app
|
215 |
if __name__ == "__main__":
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
|
1 |
+
from flask import Flask, request, jsonify, Response, stream_with_context
|
2 |
+
from flask_cors import CORS
|
3 |
import os
|
|
|
4 |
import torch
|
5 |
+
import time
|
6 |
+
import logging
|
7 |
+
import threading
|
8 |
+
import queue
|
9 |
+
import json
|
10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
11 |
|
12 |
+
# Set up logging
|
13 |
+
logging.basicConfig(
|
14 |
+
level=logging.INFO,
|
15 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
16 |
+
datefmt='%Y-%m-%d %H:%M:%S'
|
17 |
+
)
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
|
20 |
+
# Fix caching issue on Hugging Face Spaces
|
21 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
|
22 |
+
os.environ["HF_HOME"] = "/tmp"
|
23 |
+
os.environ["XDG_CACHE_HOME"] = "/tmp"
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
app = Flask(__name__)
|
26 |
+
CORS(app) # Enable CORS for all routes
|
27 |
+
|
28 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
29 |
+
logger.info(f"Using device: {device}")
|
30 |
+
|
31 |
+
# Global model variables
|
32 |
tokenizer = None
|
33 |
+
model = None
|
34 |
|
35 |
+
# Initialize models once on startup
|
36 |
+
def initialize_models():
|
37 |
+
global tokenizer, model
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
try:
|
39 |
+
logger.info("Loading language model...")
|
40 |
+
|
41 |
+
# You can change the model here if needed
|
42 |
+
model_name = "Qwen/Qwen2.5-1.5B-Instruct" # Good balance of quality and speed for CPU
|
43 |
+
|
44 |
+
# Load tokenizer with caching
|
45 |
+
logger.info(f"Loading tokenizer: {model_name}")
|
46 |
tokenizer = AutoTokenizer.from_pretrained(
|
47 |
+
model_name,
|
48 |
+
use_fast=True # Use the fast tokenizers when available
|
|
|
49 |
)
|
50 |
|
51 |
+
# Load model with optimizations for CPU
|
52 |
+
logger.info(f"Loading model: {model_name}")
|
53 |
model = AutoModelForCausalLM.from_pretrained(
|
54 |
+
model_name,
|
55 |
+
torch_dtype=torch.float16, # Use float16 for lower memory
|
56 |
+
device_map="cpu", # Explicitly set to CPU
|
57 |
+
low_cpu_mem_usage=True, # Optimize memory loading
|
58 |
+
offload_folder="offload" # Use disk offloading if needed
|
59 |
)
|
60 |
|
61 |
+
# Handle padding tokens
|
62 |
+
if tokenizer.pad_token is None:
|
63 |
+
logger.info("Setting pad token to EOS token")
|
64 |
+
tokenizer.pad_token = tokenizer.eos_token
|
65 |
+
model.config.pad_token_id = model.config.eos_token_id
|
66 |
+
|
67 |
+
# Set up model configuration for better generation
|
68 |
+
model.config.do_sample = True # Enable sampling
|
69 |
+
model.config.temperature = 0.7 # Default temperature
|
70 |
+
model.config.top_p = 0.9 # Default top_p
|
71 |
+
|
72 |
+
logger.info("Models initialized successfully")
|
73 |
except Exception as e:
|
74 |
+
logger.error(f"Error initializing models: {str(e)}")
|
|
|
|
|
75 |
raise
|
76 |
|
77 |
+
# Function to simulate "thinking" process
|
78 |
+
def thinking_process(message, result_queue):
|
79 |
+
"""
|
80 |
+
This function simulates a thinking process and puts the result in the queue.
|
81 |
+
It includes both an explicit thinking stage and then a generation stage.
|
82 |
+
"""
|
83 |
+
try:
|
84 |
+
# Simulate explicit thinking stage
|
85 |
+
logger.info(f"Thinking about: '{message}'")
|
86 |
+
|
87 |
+
# Pause to simulate deeper thinking (helps with more complex queries)
|
88 |
+
time.sleep(1)
|
89 |
+
|
90 |
+
# Create thoughtful prompt with system message and thinking instructions
|
91 |
+
prompt = f"""<|im_start|>system
|
92 |
+
You are a helpful, friendly, and thoughtful AI assistant.
|
93 |
+
Let's approach the user's request step by step:
|
94 |
+
1. First, understand what the user is really asking
|
95 |
+
2. Consider the key aspects we need to address
|
96 |
+
3. Think about the best way to structure the response
|
97 |
+
4. Provide clear, accurate information in a conversational tone
|
98 |
|
99 |
+
Always think carefully before responding, consider different angles, and provide thoughtful, detailed answers.
|
100 |
+
<|im_end|>
|
101 |
+
<|im_start|>user
|
102 |
+
{message}<|im_end|>
|
103 |
+
<|im_start|>assistant
|
104 |
+
"""
|
105 |
+
|
106 |
+
# Handle inputs
|
107 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
|
108 |
+
inputs = {k: v.to('cpu') for k, v in inputs.items()}
|
109 |
+
|
110 |
+
# Generate answer with streaming
|
111 |
+
streamer = TextStreamer(tokenizer, result_queue)
|
112 |
+
|
113 |
+
# Simulate thinking first by sending some initial dots
|
114 |
+
result_queue.put("Let me think about this...")
|
115 |
+
time.sleep(0.5)
|
116 |
+
|
117 |
+
# Generate response - we use a temperature of 0.7 for more thoughtful outputs
|
118 |
+
# and top_p for nucleus sampling to avoid repetitive or generic responses
|
119 |
+
try:
|
120 |
+
model.generate(
|
121 |
+
**inputs,
|
122 |
+
max_new_tokens=512,
|
123 |
+
temperature=0.7,
|
124 |
+
top_p=0.9,
|
125 |
do_sample=True,
|
126 |
+
streamer=streamer,
|
127 |
+
num_beams=2, # Using 2 beams helps with coherence
|
128 |
+
no_repeat_ngram_size=3,
|
129 |
+
repetition_penalty=1.2 # Discourages token repetition
|
130 |
)
|
131 |
+
except Exception as e:
|
132 |
+
logger.error(f"Model generation error: {str(e)}")
|
133 |
+
result_queue.put(f"\n\nI apologize, but I encountered an error while processing your request.")
|
134 |
+
|
135 |
+
# Signal generation is complete
|
136 |
+
result_queue.put(None)
|
137 |
+
|
138 |
+
except Exception as e:
|
139 |
+
logger.error(f"Error in thinking process: {str(e)}")
|
140 |
+
result_queue.put(f"I apologize, but I encountered an error while processing your request: {str(e)}")
|
141 |
+
# Signal generation is complete
|
142 |
+
result_queue.put(None)
|
143 |
+
|
144 |
+
# TextStreamer class for token-by-token generation
|
145 |
+
class TextStreamer:
|
146 |
+
def __init__(self, tokenizer, queue):
|
147 |
+
self.tokenizer = tokenizer
|
148 |
+
self.queue = queue
|
149 |
+
self.current_tokens = []
|
150 |
|
151 |
+
def put(self, token_ids):
|
152 |
+
self.current_tokens.extend(token_ids.tolist())
|
153 |
+
text = self.tokenizer.decode(self.current_tokens, skip_special_tokens=True)
|
154 |
+
self.queue.put(text)
|
155 |
|
156 |
+
def end(self):
|
157 |
+
pass
|
158 |
+
|
159 |
+
# API route for home page
|
160 |
+
@app.route('/')
|
161 |
+
def home():
|
162 |
+
return jsonify({"message": "AI Chat API is running!"})
|
163 |
+
|
164 |
+
# API route for streaming chat responses
|
165 |
+
@app.route('/chat', methods=['POST', 'GET'])
|
166 |
+
def chat():
|
167 |
+
# Handle both POST JSON and GET query parameters for flexibility
|
168 |
+
if request.method == 'POST':
|
169 |
+
try:
|
170 |
+
data = request.get_json()
|
171 |
+
message = data.get("message", "")
|
172 |
+
except:
|
173 |
+
# If JSON parsing fails, try form data
|
174 |
+
message = request.form.get("message", "")
|
175 |
+
else: # GET
|
176 |
+
message = request.args.get("message", "")
|
177 |
|
178 |
+
if not message:
|
179 |
+
return jsonify({"error": "Message is required"}), 400
|
180 |
|
181 |
+
try:
|
182 |
+
def generate():
|
183 |
+
# Signal the start of streaming with headers
|
184 |
+
yield "retry: 1000\n"
|
185 |
+
yield "event: message\n"
|
186 |
+
|
187 |
+
# Show thinking indicator
|
188 |
+
yield f"data: [Thinking...]\n\n"
|
189 |
+
|
190 |
+
# Create a queue for communication between threads
|
191 |
+
result_queue = queue.Queue()
|
192 |
+
|
193 |
+
# Start thinking in a separate thread
|
194 |
+
thread = threading.Thread(target=thinking_process, args=(message, result_queue))
|
195 |
+
thread.daemon = True # Make thread die when main thread exits
|
196 |
+
thread.start()
|
197 |
+
|
198 |
+
# Stream results as they become available
|
199 |
+
previous_text = ""
|
200 |
+
while True:
|
201 |
+
try:
|
202 |
+
result = result_queue.get(block=True, timeout=30) # 30 second timeout
|
203 |
+
if result is None: # End of generation
|
204 |
+
break
|
205 |
+
|
206 |
+
# Only yield the new part of the text
|
207 |
+
if isinstance(result, str):
|
208 |
+
new_part = result[len(previous_text):]
|
209 |
+
previous_text = result
|
210 |
+
if new_part:
|
211 |
+
yield f"data: {json.dumps(new_part)}\n\n"
|
212 |
+
time.sleep(0.01) # Small delay for more natural typing effect
|
213 |
+
|
214 |
+
except queue.Empty:
|
215 |
+
# Timeout occurred
|
216 |
+
yield "data: [Generation timeout. The model is taking too long to respond.]\n\n"
|
217 |
+
break
|
218 |
+
|
219 |
+
yield "data: [DONE]\n\n"
|
220 |
+
|
221 |
+
return Response(
|
222 |
+
stream_with_context(generate()),
|
223 |
+
mimetype='text/event-stream',
|
224 |
+
headers={
|
225 |
+
'Cache-Control': 'no-cache',
|
226 |
+
'Connection': 'keep-alive',
|
227 |
+
'X-Accel-Buffering': 'no' # Disable buffering for Nginx
|
228 |
+
}
|
229 |
)
|
230 |
+
|
231 |
+
except Exception as e:
|
232 |
+
logger.error(f"Error processing chat request: {str(e)}")
|
233 |
+
return jsonify({"error": f"An error occurred: {str(e)}"}), 500
|
234 |
+
|
235 |
+
# Simple API for non-streaming chat (fallback)
|
236 |
+
@app.route('/chat-simple', methods=['POST'])
|
237 |
+
def chat_simple():
|
238 |
+
data = request.get_json()
|
239 |
+
message = data.get("message", "")
|
240 |
|
241 |
+
if not message:
|
242 |
+
return jsonify({"error": "Message is required"}), 400
|
|
|
243 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
try:
|
245 |
+
# Create prompt with system message
|
246 |
+
prompt = f"""<|im_start|>system
|
247 |
+
You are a helpful, friendly, and thoughtful AI assistant. Think carefully and provide informative, detailed responses.
|
248 |
+
<|im_end|>
|
249 |
+
<|im_start|>user
|
250 |
+
{message}<|im_end|>
|
251 |
+
<|im_start|>assistant
|
252 |
+
"""
|
253 |
|
254 |
+
# Handle inputs
|
255 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
|
256 |
+
inputs = {k: v.to('cpu') for k, v in inputs.items()}
|
257 |
|
258 |
+
# Generate answer
|
259 |
+
output = model.generate(
|
260 |
+
**inputs,
|
261 |
+
max_new_tokens=512,
|
262 |
+
temperature=0.7,
|
263 |
+
top_p=0.9,
|
264 |
+
do_sample=True,
|
265 |
+
num_beams=1,
|
266 |
+
no_repeat_ngram_size=3
|
267 |
+
)
|
268 |
|
269 |
+
# Decode and format answer
|
270 |
+
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
|
|
271 |
|
272 |
+
# Clean up the response
|
273 |
+
if "<|im_end|>" in answer:
|
274 |
+
answer = answer.split("<|im_start|>assistant")[-1].split("<|im_end|>")[0].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
|
276 |
+
return jsonify({"response": answer})
|
277 |
+
|
278 |
+
except Exception as e:
|
279 |
+
logger.error(f"Error processing chat request: {str(e)}")
|
280 |
+
return jsonify({"error": f"An error occurred: {str(e)}"}), 500
|
|
|
|
|
281 |
|
|
|
282 |
if __name__ == "__main__":
|
283 |
+
try:
|
284 |
+
# Initialize models at startup
|
285 |
+
initialize_models()
|
286 |
+
logger.info("Starting Flask application")
|
287 |
+
app.run(host="0.0.0.0", port=7860)
|
288 |
+
except Exception as e:
|
289 |
+
logger.critical(f"Failed to start application: {str(e)}")
|