Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,16 @@
|
|
1 |
import os
|
2 |
import time
|
3 |
import torch
|
|
|
4 |
from flask import Flask, request, jsonify
|
5 |
from flask_cors import CORS
|
6 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
import gradio as gr
|
8 |
|
|
|
|
|
|
|
|
|
9 |
# Global variables
|
10 |
MODEL_ID = "microsoft/bitnet-b1.58-2B-4T"
|
11 |
MAX_LENGTH = 2048
|
@@ -27,21 +32,29 @@ def load_model_and_tokenizer():
|
|
27 |
|
28 |
print(f"Loading model: {MODEL_ID}")
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
# Initialize Flask app
|
47 |
app = Flask(__name__)
|
@@ -205,4 +218,8 @@ if __name__ == "__main__":
|
|
205 |
|
206 |
# Create and launch Gradio interface
|
207 |
demo = create_ui()
|
208 |
-
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import time
|
3 |
import torch
|
4 |
+
import warnings
|
5 |
from flask import Flask, request, jsonify
|
6 |
from flask_cors import CORS
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, logging
|
8 |
import gradio as gr
|
9 |
|
10 |
+
# Suppress warnings
|
11 |
+
warnings.filterwarnings("ignore")
|
12 |
+
logging.set_verbosity_error()
|
13 |
+
|
14 |
# Global variables
|
15 |
MODEL_ID = "microsoft/bitnet-b1.58-2B-4T"
|
16 |
MAX_LENGTH = 2048
|
|
|
32 |
|
33 |
print(f"Loading model: {MODEL_ID}")
|
34 |
|
35 |
+
try:
|
36 |
+
# Load tokenizer
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
38 |
+
MODEL_ID,
|
39 |
+
use_fast=True,
|
40 |
+
trust_remote_code=True # Added to trust remote code
|
41 |
+
)
|
42 |
+
|
43 |
+
# Load model with optimizations for limited resources
|
44 |
+
model = AutoModelForCausalLM.from_pretrained(
|
45 |
+
MODEL_ID,
|
46 |
+
device_map="auto",
|
47 |
+
torch_dtype=torch.bfloat16,
|
48 |
+
load_in_4bit=True,
|
49 |
+
trust_remote_code=True # Added to trust remote code
|
50 |
+
)
|
51 |
+
|
52 |
+
print("Model and tokenizer loaded successfully!")
|
53 |
+
except Exception as e:
|
54 |
+
import traceback
|
55 |
+
print(f"Error loading model: {str(e)}")
|
56 |
+
print(traceback.format_exc())
|
57 |
+
raise
|
58 |
|
59 |
# Initialize Flask app
|
60 |
app = Flask(__name__)
|
|
|
218 |
|
219 |
# Create and launch Gradio interface
|
220 |
demo = create_ui()
|
221 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
222 |
+
|
223 |
+
# Flask won't reach here when Gradio is running
|
224 |
+
# If you want to run Flask separately:
|
225 |
+
# app.run(host='0.0.0.0', port=int(os.environ.get('PORT', 7860)))
|