from flask import Flask, request, jsonify from flask_cors import CORS from transformers import AutoTokenizer, AutoModelForCausalLM import torch app = Flask(__name__) CORS(app) # Model configuration MODEL_NAME = "deepseek-ai/deepseek-r1-6b-chat" MAX_NEW_TOKENS = 512 DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # Initialize model and tokenizer try: tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, device_map="auto", torch_dtype=torch.bfloat16 if DEVICE == "cuda" else torch.float32 ) print("Model loaded successfully!") except Exception as e: print(f"Model loading failed: {str(e)}") model = None def generate_response(prompt): inputs = tokenizer(prompt, return_tensors="pt").to(DEVICE) outputs = model.generate( **inputs, max_new_tokens=MAX_NEW_TOKENS, do_sample=True, temperature=0.7, top_p=0.9, pad_token_id=tokenizer.eos_token_id ) return tokenizer.decode(outputs[0], skip_special_tokens=True) @app.route('/chat', methods=['POST']) def chat(): if not model: return jsonify({"error": "Model not loaded"}), 500 data = request.json prompt = data.get("prompt", "") if not prompt: return jsonify({"error": "No prompt provided"}), 400 try: response = generate_response(prompt) return jsonify({"response": response}) except Exception as e: return jsonify({"error": str(e)}), 500 @app.route('/health', methods=['GET']) def health_check(): status = "ready" if model else "unavailable" return jsonify({"status": status}) if __name__ == '__main__': app.run(host='0.0.0.0', port=5000)