import os import time import json import gc # For garbage collection from pathlib import Path from flask import Flask, request, jsonify, Response from flask_cors import CORS import torch # Create cache directory if not exists cache_dir = Path(os.getenv('TRANSFORMERS_CACHE', '/app/cache')) cache_dir.mkdir(parents=True, exist_ok=True) app = Flask(__name__) CORS(app) # Allow cross-origin requests # Model configuration # Use DeepSeek R1 Distill Qwen 1.5B model (much lighter than 7B) MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" MAX_NEW_TOKENS = 256 DEVICE = "cpu" if not torch.cuda.is_available() else "cuda" # Initialize model variables tokenizer = None model = None def load_model(): """Load model on first request to save memory at startup""" global tokenizer, model if tokenizer is not None and model is not None: return True try: from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig print(f"Loading model {MODEL_NAME}...") print(f"Using device: {DEVICE}") print(f"Cache directory: {cache_dir}") # Use 4-bit quantization for memory efficiency if on CUDA if DEVICE == "cuda": quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True ) else: # For CPU, we'll use a different optimization approach quantization_config = None # Load tokenizer tokenizer = AutoTokenizer.from_pretrained( MODEL_NAME, cache_dir=str(cache_dir), trust_remote_code=True ) # Configure token if HF_TOKEN is set hf_token = os.environ.get("HF_TOKEN") token_kwargs = {"token": hf_token} if hf_token else {} # Additional memory optimization settings for low resource environments if DEVICE == "cpu": # Load model with 8-bit quantization for CPU try: # Try int8 quantization for CPU model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, cache_dir=str(cache_dir), load_in_8bit=True, low_cpu_mem_usage=True, trust_remote_code=True, **token_kwargs ) except Exception as e: print(f"8-bit quantization failed, falling back to standard loading: {str(e)}") model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, cache_dir=str(cache_dir), low_cpu_mem_usage=True, trust_remote_code=True, **token_kwargs ) else: # Load model with 4-bit quantization for CUDA model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, cache_dir=str(cache_dir), device_map="auto", torch_dtype=torch.float16, quantization_config=quantization_config, low_cpu_mem_usage=True, trust_remote_code=True, **token_kwargs ) print("✅ Model loaded successfully!") return True except Exception as e: print(f"❌ Model loading failed: {str(e)}") return False def stream_generator(prompt): """Generator function for streaming response with thinking steps""" # Ensure model is loaded if not load_model(): yield json.dumps({"type": "error", "content": "Model not loaded"}) + '\n' return # Thinking phases thinking_steps = [ "🔍 Analyzing your question...", "🧠 Processing...", "💡 Formulating response..." ] # Stream thinking steps (fewer steps, faster timing for lighter model) for step in thinking_steps: yield json.dumps({"type": "thinking", "content": step}) + '\n' time.sleep(0.5) # Reduced timing for faster response # Prepare streaming generation try: # Format prompt for the model (DeepSeek specific) formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n" inputs = tokenizer(formatted_prompt, return_tensors="pt") if DEVICE == "cuda": inputs = inputs.to("cuda") # Use memory efficient approach with torch.no_grad(): generated_ids = model.generate( **inputs, max_new_tokens=MAX_NEW_TOKENS, temperature=0.7, top_p=0.9, do_sample=True, pad_token_id=tokenizer.eos_token_id, return_dict_in_generate=True, output_scores=False) # Get output sequence output_ids = generated_ids.sequences[0][len(inputs.input_ids[0]):] # Stream in slightly larger chunks for better performance full_output = "" chunk_size = 5 # Increased number of tokens per chunk for i in range(0, len(output_ids), chunk_size): chunk_ids = output_ids[i:i+chunk_size] chunk_text = tokenizer.decode(chunk_ids, skip_special_tokens=True) full_output += chunk_text yield json.dumps({ "type": "answer", "content": chunk_text }) + '\n' # Smaller delay for faster streaming time.sleep(0.03) except Exception as e: import traceback error_details = f"Error: {str(e)}\n{traceback.format_exc()}" print(error_details) yield json.dumps({ "type": "error", "content": f"Generation error: {str(e)}" }) + '\n' # Signal completion yield json.dumps({"type": "complete"}) + '\n' # Clean up memory aggressively if DEVICE == "cuda": torch.cuda.empty_cache() gc.collect() @app.route('/stream_chat', methods=['POST']) def stream_chat(): data = request.get_json() prompt = data.get('prompt', '').strip() if not prompt: return jsonify({"error": "Empty prompt"}), 400 return Response( stream_generator(prompt), mimetype='text/event-stream', headers={ 'Cache-Control': 'no-cache', 'X-Accel-Buffering': 'no', # Prevent Nginx buffering 'Connection': 'keep-alive' } ) @app.route('/chat', methods=['POST']) def chat(): # Ensure model is loaded if not load_model(): return jsonify({"error": "Model failed to load"}), 500 data = request.get_json() prompt = data.get('prompt', '').strip() if not prompt: return jsonify({"error": "Empty prompt"}), 400 try: # Format prompt for DeepSeek model formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n" inputs = tokenizer(formatted_prompt, return_tensors="pt") if DEVICE == "cuda": inputs = inputs.to("cuda") with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=MAX_NEW_TOKENS, temperature=0.7, top_p=0.9, do_sample=True, pad_token_id=tokenizer.eos_token_id) response = tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True) # Clean up memory if DEVICE == "cuda": torch.cuda.empty_cache() gc.collect() return jsonify({"response": response}) except Exception as e: import traceback error_details = f"Error: {str(e)}\n{traceback.format_exc()}" print(error_details) return jsonify({"error": str(e)}), 500 @app.route('/health', methods=['GET']) def health_check(): model_loaded = tokenizer is not None and model is not None memory_info = "N/A" # Get memory usage stats if torch.cuda.is_available(): memory_info = f"{torch.cuda.memory_allocated()/1024**2:.2f}MB / {torch.cuda.get_device_properties(0).total_memory/1024**2:.2f}MB" else: import psutil memory_info = f"{psutil.virtual_memory().used/1024**3:.2f}GB / {psutil.virtual_memory().total/1024**3:.2f}GB" try: # Check if we need to load the model if not model_loaded and request.args.get('load') == 'true': model_loaded = load_model() except Exception as e: print(f"Health check error: {str(e)}") status = { "status": "ok" if model_loaded else "waiting", "model": MODEL_NAME, "model_loaded": model_loaded, "device": DEVICE, "cache_dir": str(cache_dir), "max_tokens": MAX_NEW_TOKENS, "memory_usage": memory_info } return jsonify(status) @app.route('/unload', methods=['POST']) def unload_model(): """Endpoint to manually unload model and free memory""" global model, tokenizer if model is not None: del model model = None if tokenizer is not None: del tokenizer tokenizer = None # Force garbage collection if torch.cuda.is_available(): torch.cuda.empty_cache() gc.collect() return jsonify({"status": "Model unloaded", "memory_freed": True}) @app.route('/') def home(): return jsonify({ "service": "DeepSeek-1.5B Chat API", "status": "online", "endpoints": { "POST /chat": "Single-response chat", "POST /stream_chat": "Streaming chat with thinking steps", "GET /health": "Service health check", "POST /unload": "Unload model to free memory" }, "config": { "model": MODEL_NAME, "max_tokens": MAX_NEW_TOKENS, "device": DEVICE, "cache_location": str(cache_dir) } }) if __name__ == '__main__': # Load model at startup only if explicitly requested if os.getenv('PRELOAD_MODEL', 'false').lower() == 'true': load_model() port = int(os.environ.get("PORT", 5000)) app.run(host='0.0.0.0', port=port)