File size: 7,261 Bytes
54a110c
 
 
 
 
 
 
 
 
6c88d14
54a110c
48ec86e
93b3b82
48ec86e
 
 
 
 
6c88d14
 
 
54a110c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c88d14
48ec86e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54a110c
6c88d14
54a110c
 
48ec86e
54a110c
 
 
6c88d14
54a110c
 
 
48ec86e
54a110c
 
 
 
 
 
 
6c88d14
 
48ec86e
6c88d14
54a110c
 
 
 
 
48ec86e
54a110c
 
48ec86e
54a110c
 
6c88d14
54a110c
 
6c88d14
 
54a110c
 
 
 
 
 
 
6c88d14
 
48ec86e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c88d14
 
54a110c
 
 
 
 
 
48ec86e
7b0f470
54a110c
 
93b3b82
6c88d14
 
 
54a110c
6c88d14
 
 
 
 
 
 
54a110c
6c88d14
 
 
54a110c
 
6c88d14
54a110c
 
 
 
6c88d14
 
 
 
 
 
 
 
 
 
54a110c
6c88d14
54a110c
 
48ec86e
 
6c88d14
 
 
 
 
 
 
 
 
 
54a110c
 
6c88d14
 
 
 
 
 
54a110c
6c88d14
 
 
 
54a110c
 
6c88d14
 
54a110c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# pylint: disable=line-too-long,missing-module-docstring,missing-class-docstring,missing-function-docstring,broad-exception-caught, unused-variable, too-many-statements,too-many-return-statements,too-many-locals,redefined-builtin,unused-import
# ruff: noqa: F401

import os
import typing
from dataclasses import dataclass, field

import pandas as pd
import requests
import rich
import smolagents
import wikipediaapi
from loguru import logger
from smolagents import CodeAgent, DuckDuckGoSearchTool, FinalAnswerTool, HfApiModel, Tool, VisitWebpageTool

from get_model import get_model
from litellm_model import litellm_model
from openai_model import openai_model

print = rich.get_console().print
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
SPACE_ID = os.getenv("SPACE_ID", "mikeee/final-assignment")

AUTHORIZED_IMPORTS = [
    "requests",
    "zipfile",
    "pandas",
    "numpy",
    "sympy",
    "json",
    "bs4",
    "pubchempy",
    "xml",
    "yahoo_finance",
    "Bio",
    "sklearn",
    "scipy",
    "pydub",
    "PIL",
    "chess",
    "PyPDF2",
    "pptx",
    "torch",
    "datetime",
    "fractions",
    "csv",
    "io",
    "glob",
]


class WikipediaSearchTool(Tool):
    name = "wikipedia_search"
    description = "Fetches a summary of a Wikipedia page based on a given search query (only one word or group of words)."

    inputs = {
        "query": {"type": "string", "description": "The search term for the Wikipedia page (only one word or group of words)."}
    }

    output_type = "string"

    def __init__(self, lang="en"):
        super().__init__()
        self.wiki = wikipediaapi.Wikipedia(
            language=lang, user_agent="MinimalAgent/1.0")

    def forward(self, query: str):
        page = self.wiki.page(query)
        if not page.exists():
            return "No Wikipedia page found."
        return page.summary[:1000]


@dataclass
class BasicAgent:
    model: smolagents.models.Model = HfApiModel()
    tools: list = field(default_factory=lambda: [])
    verbosity_level: int = 0
    # def __init__(self):
    def __post_init__(self):
        """Run post_init."""
        logger.debug("BasicAgent initialized.")
        self.agent = CodeAgent(
            tools=self.tools,
            model=self.model,
            verbosity_level=self.verbosity_level,
            additional_authorized_imports=AUTHORIZED_IMPORTS,
            planning_interval=4,
        )

    def get_answer(self, question: str):
        return f"ans to {question[:220]}..."

    def __call__(self, question: str) -> str:
        # print(f"Agent received question (first 50 chars): {question[:50]}...")
        # print(f"Agent received question: {question}...")

        # fixed_answer = "This is a default answer."
        # print(f"Agent returning fixed answer: {fixed_answer}")
        # return fixed_answer
        try:
            # answer = self.get_answer(question)
            answer = self.agent.run(question)
        except Exception as e:
            logger.error(e)
            answer = str(e)[:110] + "..."

        return answer


def main():
    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"  # noqa

    # username = "mikeee"
    # repo_name = "final-assignment"

    username, _, repo_name = SPACE_ID.partition("/")

    space_id = f"{username}/{repo_name}"

    # model = get_model(cat="gemini")

    _ = (
        "gemini-2.5-flash-preview-04-17",
        # "https://api-proxy.me/gemini/v1beta",
        "https://generativelanguage.googleapis.com/v1beta",
        os.getenv("GEMINI_API_KEY"),
    )

    _ = (
        "grok-3-beta",
        "https://api.x.ai/v1",
        os.getenv("XAI_API_KEY"),
    )

    # model = litellm_model(*_)
    model = openai_model(*_)

    messages = [{'role': 'user', 'content': 'Say this is a test.'}]
    print(model(messages))
    # raise SystemExit("By intention")

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        # agent = BasicAgent()
        agent = BasicAgent(
            model=model,
            tools=[
                DuckDuckGoSearchTool(),
                VisitWebpageTool(),
                WikipediaSearchTool(),
                FinalAnswerTool(),
            ]
        )
        agent.agent.visualize()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=30)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        print(f"Response text: {response.text[:500]}")
        return f"Error decoding server response for questions: {e}", None
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []

    print(f"Running agent on {len(questions_data)} questions...")

    # for item in questions_data:
    # for item in questions_data[-1:]:
    for item in questions_data[14:15]:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}  # noqa
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)
    print(answers_payload)

    agent.agent.visualize()
    return None, None

if __name__ == "__main__":
    main()