Spaces:
Running
Running
File size: 5,797 Bytes
54a110c 6c88d14 54a110c 93b3b82 6c88d14 54a110c 6c88d14 54a110c 6c88d14 54a110c 6c88d14 54a110c 6c88d14 54a110c 6c88d14 54a110c 6c88d14 54a110c 6c88d14 54a110c 6c88d14 54a110c 7b0f470 54a110c 93b3b82 6c88d14 54a110c 6c88d14 54a110c 6c88d14 54a110c 6c88d14 54a110c 6c88d14 54a110c 6c88d14 54a110c 6c88d14 54a110c 6c88d14 54a110c 6c88d14 54a110c 6c88d14 54a110c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
# pylint: disable=line-too-long,missing-module-docstring,missing-class-docstring,missing-function-docstring,broad-exception-caught, unused-variable, too-many-statements,too-many-return-statements,too-many-locals,redefined-builtin,unused-import
# ruff: noqa: F401
import os
import typing
from dataclasses import dataclass, field
import pandas as pd
import requests
import rich
import smolagents
from get_model import get_model
from loguru import logger
from smolagents import CodeAgent, DuckDuckGoSearchTool, FinalAnswerTool, HfApiModel, VisitWebpageTool
print = rich.get_console().print
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
SPACE_ID = os.getenv("SPACE_ID", "mikeee/final-assignment")
AUTHORIZED_IMPORTS = [
"requests",
"zipfile",
"pandas",
"numpy",
"sympy",
"json",
"bs4",
"pubchempy",
"xml",
"yahoo_finance",
"Bio",
"sklearn",
"scipy",
"pydub",
"PIL",
"chess",
"PyPDF2",
"pptx",
"torch",
"datetime",
"fractions",
"csv",
"io",
"glob",
]
@dataclass
class BasicAgent:
model: smolagents.models.Model = HfApiModel()
tools: list = field(default_factory=lambda: [])
# def __init__(self):
def __post_init__(self):
"""Run post_init."""
logger.debug("BasicAgent initialized.")
self.agent = CodeAgent(
tools=self.tools,
model=self.model,
verbosity_level=3,
additional_authorized_imports=AUTHORIZED_IMPORTS,
planning_interval=4,
)
def get_answer(self, question: str):
return f"ans to {question[:220]}..."
def __call__(self, question: str) -> str:
# print(f"Agent received question (first 50 chars): {question[:50]}...")
print(f"Agent received question: {question}...")
# fixed_answer = "This is a default answer."
# print(f"Agent returning fixed answer: {fixed_answer}")
# return fixed_answer
try:
# answer = self.get_answer(question)
answer = self.agent(question)
except Exception as e:
logger.error(e)
answer = str(e)[:10] + "..."
return answer
def main():
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit" # noqa
# username = "mikeee"
# repo_name = "final-assignment"
username, _, repo_name = SPACE_ID.partition("/")
space_id = f"{username}/{repo_name}"
model = get_model(cat="gemini")
# 1. Instantiate Agent ( modify this part to create your agent)
try:
# agent = BasicAgent()
agent = BasicAgent(
model=model,
tools=[
DuckDuckGoSearchTool(),
VisitWebpageTool(),
FinalAnswerTool(),
]
)
agent.agent.visualize()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=30)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
# for item in questions_data:
for item in questions_data[-1:]:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} # noqa
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
print(answers_payload)
agent.agent.visualize()
return None, None
if __name__ == "__main__":
main()
|