Spaces:
Running
Running
File size: 8,716 Bytes
54a110c 6c88d14 54a110c 48ec86e 93b3b82 dd9518b 2027c04 48ec86e 6c88d14 3305d00 6c88d14 54a110c 2027c04 3305d00 54a110c 6c88d14 48ec86e 54a110c 6c88d14 54a110c 48ec86e dd9518b 54a110c 6c88d14 54a110c 48ec86e dd9518b 54a110c 6c88d14 48ec86e 6c88d14 54a110c 48ec86e 54a110c 48ec86e 54a110c 6c88d14 54a110c 6c88d14 54a110c 6c88d14 dd9518b 6c88d14 dd9518b 6c88d14 54a110c 6c88d14 54a110c 6c88d14 dd9518b 54a110c dd9518b 54a110c dd9518b 6c88d14 dd9518b fa1b525 dd9518b 6c88d14 dd9518b 3305d00 dd9518b 3305d00 dd9518b 3305d00 dd9518b 9c6c2c3 3305d00 dd9518b 6c88d14 dd9518b 6c88d14 54a110c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
# pylint: disable=line-too-long,missing-module-docstring,missing-class-docstring,missing-function-docstring,broad-exception-caught, unused-variable, too-many-statements,too-many-return-statements,too-many-locals,redefined-builtin,unused-import
# ruff: noqa: F401
import os
import typing
from dataclasses import dataclass, field
import pandas as pd
import requests
import rich
import smolagents
import wikipediaapi
from loguru import logger
from mcp import StdioServerParameters
from smolagents import CodeAgent, DuckDuckGoSearchTool, FinalAnswerTool, Tool, ToolCollection, VisitWebpageTool
from smolagents import InferenceClientModel as HfApiModel
from get_model import get_model
from litellm_model import litellm_model
from openai_model import openai_model
console = rich.get_console()
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
SPACE_ID = os.getenv("SPACE_ID", "mikeee/final-assignment")
AUTHORIZED_IMPORTS = [
"requests",
"zipfile",
"pandas",
"numpy",
"sympy",
"json",
"bs4",
"pubchempy",
"xml",
"yahoo_finance",
"Bio",
"sklearn",
"scipy",
"pydub",
"PIL",
"chess",
"PyPDF2",
"pptx",
"torch",
"datetime",
"fractions",
"csv",
"io",
"glob",
"chess",
"speech_recognition",
"input",
"pandas.compat",
]
class WikipediaSearchTool(Tool):
name = "wikipedia_search"
description = "Fetches a summary of a Wikipedia page based on a given search query (only one word or group of words)."
inputs = {
"query": {"type": "string", "description": "The search term for the Wikipedia page (only one word or group of words)."}
}
output_type = "string"
def __init__(self, lang="en"):
super().__init__()
self.wiki = wikipediaapi.Wikipedia(
language=lang, user_agent="MinimalAgent/1.0")
def forward(self, query: str):
page = self.wiki.page(query)
if not page.exists():
return "No Wikipedia page found."
return page.summary[:1000]
@dataclass
class BasicAgent:
model: smolagents.models.Model = HfApiModel()
tools: list = field(default_factory=lambda: [])
verbosity_level: int = 0
additional_authorized_imports: list = field(default_factory=lambda: AUTHORIZED_IMPORTS)
planning_interval: int = 4
# def __init__(self):
def __post_init__(self):
"""Run post_init."""
logger.debug("BasicAgent initialized.")
self.agent = CodeAgent(
tools=self.tools,
model=self.model,
verbosity_level=self.verbosity_level,
additional_authorized_imports=self.additional_authorized_imports,
planning_interval=self.planning_interval,
)
def get_answer(self, question: str):
return f"ans to {question[:220]}..."
def __call__(self, question: str) -> str:
# print(f"Agent received question (first 50 chars): {question[:50]}...")
# print(f"Agent received question: {question}...")
# fixed_answer = "This is a default answer."
# print(f"Agent returning fixed answer: {fixed_answer}")
# return fixed_answer
try:
# answer = self.get_answer(question)
answer = self.agent.run(question)
except Exception as e:
logger.error(e)
answer = str(e)[:110] + "..."
return answer
def main():
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit" # noqa
# username = "mikeee"
# repo_name = "final-assignment"
username, _, repo_name = SPACE_ID.partition("/")
space_id = f"{username}/{repo_name}"
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions: fetch before openai_model() which my set proxy
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=120)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# model = get_model(cat="gemini")
_ = (
"gemini-2.5-flash-preview-04-17",
# "https://api-proxy.me/gemini/v1beta",
"https://generativelanguage.googleapis.com/v1beta",
os.getenv("GEMINI_API_KEY"),
)
_ = (
"grok-3-beta",
"https://api.x.ai/v1",
os.getenv("XAI_API_KEY"),
)
# model = litellm_model(*_)
# model = get_model()
model = openai_model() # defautl llama4 scout
# messages = [{'role': 'user', 'content': 'Say this is a test.'}]
# print(model(messages))
# raise SystemExit("By intention")
mcp_searxng_params = StdioServerParameters(
**{
"command": "npx",
"args": [
"-y",
"mcp-searxng"
],
"env": {
"SEARXNG_URL": os.getenv("SEARXNG_URL", "https://searx.be")
}
}
)
# with ToolCollection.from_mcp(mcp_searxng_params, trust_remote_code=True) as searxng_tool_collection, ToolCollection.from_mcp(mcp_markitdown_params, trust_remote_code=True) as markitdown_tools:
with ToolCollection.from_mcp(mcp_searxng_params, trust_remote_code=True) as searxng_tool_collection:
# 1. Instantiate Agent ( modify this part to create your agent)
try:
# agent = BasicAgent()
agent = BasicAgent(
model=model,
tools=[
*searxng_tool_collection.tools,
# DuckDuckGoSearchTool(),
VisitWebpageTool(),
WikipediaSearchTool(),
FinalAnswerTool(),
],
# verbosity_level=1,
)
agent.agent.visualize()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for idx, item in enumerate(questions_data):
# for item in questions_data[-1:]:
# for item in questions_data[14:15]:
# for item in questions_data[-6:]:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
print(f"{idx=} {'*' * 20}")
print([submitted_answer, question_text])
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} # noqa
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
print(answers_payload)
agent.agent.visualize()
return None, None
if __name__ == "__main__":
main()
|