Spaces:
Running
Running
ffreemt
commited on
Commit
·
4d96293
1
Parent(s):
48ec86e
Update llama4 models
Browse files- __pycache__/basic_agent.cpython-312.pyc +0 -0
- __pycache__/get_model.cpython-312.pyc +0 -0
- app.py +28 -31
- get_gemini_keys.py +1 -1
- get_model.py +41 -17
__pycache__/basic_agent.cpython-312.pyc
CHANGED
Binary files a/__pycache__/basic_agent.cpython-312.pyc and b/__pycache__/basic_agent.cpython-312.pyc differ
|
|
__pycache__/get_model.cpython-312.pyc
CHANGED
Binary files a/__pycache__/get_model.cpython-312.pyc and b/__pycache__/get_model.cpython-312.pyc differ
|
|
app.py
CHANGED
@@ -7,12 +7,13 @@ import pandas as pd
|
|
7 |
import requests
|
8 |
import rich
|
9 |
import wikipediaapi
|
10 |
-
from basic_agent import BasicAgent
|
11 |
-
from get_model import get_model
|
12 |
from mcp import StdioServerParameters
|
13 |
from smolagents import DuckDuckGoSearchTool, FinalAnswerTool, Tool, ToolCollection, VisitWebpageTool
|
14 |
from ycecream import y
|
15 |
|
|
|
|
|
|
|
16 |
y.configure(sln=1)
|
17 |
print = rich.get_console().print
|
18 |
|
@@ -37,13 +38,14 @@ class BasicAgent:
|
|
37 |
return fixed_answer
|
38 |
# """
|
39 |
|
40 |
-
|
|
|
41 |
"""Fetch all questions, run the BasicAgent on them, submit all answers, and display the results."""
|
42 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
43 |
-
space_id = os.getenv("SPACE_ID")
|
44 |
|
45 |
if profile:
|
46 |
-
username= f"{profile.username}"
|
47 |
print(f"User logged in: {username}")
|
48 |
else:
|
49 |
print("User not logged in.")
|
@@ -56,12 +58,13 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
56 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
57 |
try:
|
58 |
agent = BasicAgent(
|
59 |
-
model=get_model(cat="gemini"),
|
|
|
60 |
tools=[
|
61 |
DuckDuckGoSearchTool(),
|
62 |
VisitWebpageTool(),
|
63 |
-
FinalAnswerTool(),
|
64 |
-
]
|
65 |
)
|
66 |
except Exception as e:
|
67 |
print(f"Error instantiating agent: {e}")
|
@@ -77,17 +80,17 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
77 |
response.raise_for_status()
|
78 |
questions_data = response.json()
|
79 |
if not questions_data:
|
80 |
-
|
81 |
-
|
82 |
print(f"Fetched {len(questions_data)} questions.")
|
83 |
|
84 |
except requests.exceptions.RequestException as e:
|
85 |
print(f"Error fetching questions: {e}")
|
86 |
return f"Error fetching questions: {e}", None
|
87 |
except requests.exceptions.JSONDecodeError as e:
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
except Exception as e:
|
92 |
print(f"An unexpected error occurred fetching questions: {e}")
|
93 |
return f"An unexpected error occurred fetching questions: {e}", None
|
@@ -107,8 +110,8 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
107 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
108 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
109 |
except Exception as e:
|
110 |
-
|
111 |
-
|
112 |
|
113 |
if not answers_payload:
|
114 |
print("Agent did not produce any answers to submit.")
|
@@ -125,13 +128,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
125 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
126 |
response.raise_for_status()
|
127 |
result_data = response.json()
|
128 |
-
final_status = (
|
129 |
-
f"Submission Successful!\n"
|
130 |
-
f"User: {result_data.get('username')}\n"
|
131 |
-
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
132 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
133 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
134 |
-
)
|
135 |
print("Submission successful.")
|
136 |
results_df = pd.DataFrame(results_log)
|
137 |
return final_status, results_df
|
@@ -177,7 +174,10 @@ with gr.Blocks() as demo:
|
|
177 |
---
|
178 |
**Disclaimers:**
|
179 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
180 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you
|
|
|
|
|
|
|
181 |
"""
|
182 |
)
|
183 |
|
@@ -189,16 +189,13 @@ with gr.Blocks() as demo:
|
|
189 |
# Removed max_rows=10 from DataFrame constructor
|
190 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
191 |
|
192 |
-
run_button.click(
|
193 |
-
fn=run_and_submit_all,
|
194 |
-
outputs=[status_output, results_table]
|
195 |
-
)
|
196 |
|
197 |
if __name__ == "__main__":
|
198 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
199 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
200 |
space_host_startup = os.getenv("SPACE_HOST")
|
201 |
-
space_id_startup = os.getenv("SPACE_ID")
|
202 |
|
203 |
if space_host_startup:
|
204 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
@@ -206,14 +203,14 @@ if __name__ == "__main__":
|
|
206 |
else:
|
207 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
208 |
|
209 |
-
if space_id_startup:
|
210 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
211 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
212 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
213 |
else:
|
214 |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
215 |
|
216 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
217 |
|
218 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
219 |
demo.launch(debug=True, share=False)
|
|
|
7 |
import requests
|
8 |
import rich
|
9 |
import wikipediaapi
|
|
|
|
|
10 |
from mcp import StdioServerParameters
|
11 |
from smolagents import DuckDuckGoSearchTool, FinalAnswerTool, Tool, ToolCollection, VisitWebpageTool
|
12 |
from ycecream import y
|
13 |
|
14 |
+
from basic_agent import BasicAgent
|
15 |
+
from get_model import get_model
|
16 |
+
|
17 |
y.configure(sln=1)
|
18 |
print = rich.get_console().print
|
19 |
|
|
|
38 |
return fixed_answer
|
39 |
# """
|
40 |
|
41 |
+
|
42 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
43 |
"""Fetch all questions, run the BasicAgent on them, submit all answers, and display the results."""
|
44 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
45 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
46 |
|
47 |
if profile:
|
48 |
+
username = f"{profile.username}"
|
49 |
print(f"User logged in: {username}")
|
50 |
else:
|
51 |
print("User not logged in.")
|
|
|
58 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
59 |
try:
|
60 |
agent = BasicAgent(
|
61 |
+
# model=get_model(cat="gemini"),
|
62 |
+
model=get_model(cat="llama"),
|
63 |
tools=[
|
64 |
DuckDuckGoSearchTool(),
|
65 |
VisitWebpageTool(),
|
66 |
+
# FinalAnswerTool(),
|
67 |
+
],
|
68 |
)
|
69 |
except Exception as e:
|
70 |
print(f"Error instantiating agent: {e}")
|
|
|
80 |
response.raise_for_status()
|
81 |
questions_data = response.json()
|
82 |
if not questions_data:
|
83 |
+
print("Fetched questions list is empty.")
|
84 |
+
return "Fetched questions list is empty or invalid format.", None
|
85 |
print(f"Fetched {len(questions_data)} questions.")
|
86 |
|
87 |
except requests.exceptions.RequestException as e:
|
88 |
print(f"Error fetching questions: {e}")
|
89 |
return f"Error fetching questions: {e}", None
|
90 |
except requests.exceptions.JSONDecodeError as e:
|
91 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
92 |
+
print(f"Response text: {response.text[:500]}")
|
93 |
+
return f"Error decoding server response for questions: {e}", None
|
94 |
except Exception as e:
|
95 |
print(f"An unexpected error occurred fetching questions: {e}")
|
96 |
return f"An unexpected error occurred fetching questions: {e}", None
|
|
|
110 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
111 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
112 |
except Exception as e:
|
113 |
+
print(f"Error running agent on task {task_id}: {e}")
|
114 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
115 |
|
116 |
if not answers_payload:
|
117 |
print("Agent did not produce any answers to submit.")
|
|
|
128 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
129 |
response.raise_for_status()
|
130 |
result_data = response.json()
|
131 |
+
final_status = f"Submission Successful!\nUser: {result_data.get('username')}\nOverall Score: {result_data.get('score', 'N/A')}% ({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\nMessage: {result_data.get('message', 'No message received.')}"
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
print("Submission successful.")
|
133 |
results_df = pd.DataFrame(results_log)
|
134 |
return final_status, results_df
|
|
|
174 |
---
|
175 |
**Disclaimers:**
|
176 |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
177 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you
|
178 |
+
to develop your own, more robust solution. For instance for the delay process of the
|
179 |
+
submit button, a solution could be to cache the answers and submit in a seperate
|
180 |
+
action or even to answer the questions in async.
|
181 |
"""
|
182 |
)
|
183 |
|
|
|
189 |
# Removed max_rows=10 from DataFrame constructor
|
190 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
191 |
|
192 |
+
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
|
|
|
|
|
|
193 |
|
194 |
if __name__ == "__main__":
|
195 |
+
print("\n" + "-" * 30 + " App Starting " + "-" * 30)
|
196 |
# Check for SPACE_HOST and SPACE_ID at startup for information
|
197 |
space_host_startup = os.getenv("SPACE_HOST")
|
198 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
199 |
|
200 |
if space_host_startup:
|
201 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
|
|
203 |
else:
|
204 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
205 |
|
206 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
207 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
208 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
209 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
210 |
else:
|
211 |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
212 |
|
213 |
+
print("-" * (60 + len(" App Starting ")) + "\n")
|
214 |
|
215 |
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
216 |
demo.launch(debug=True, share=False)
|
get_gemini_keys.py
CHANGED
@@ -11,7 +11,7 @@ from loguru import logger
|
|
11 |
def get_gemini_keys(file=r".env-gemini", dotenv=False):
|
12 |
"""Get gemini keys."""
|
13 |
if not Path(file).exists():
|
14 |
-
logger.debug(f"{file} does not exit,
|
15 |
return []
|
16 |
|
17 |
if Path(file).name.startswith(".env"):
|
|
|
11 |
def get_gemini_keys(file=r".env-gemini", dotenv=False):
|
12 |
"""Get gemini keys."""
|
13 |
if not Path(file).exists():
|
14 |
+
logger.debug(f"{file} does not exit, returning [] ")
|
15 |
return []
|
16 |
|
17 |
if Path(file).name.startswith(".env"):
|
get_model.py
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
"""Create and return a model."""
|
|
|
2 |
|
3 |
import os
|
4 |
import re
|
5 |
from platform import node
|
6 |
|
7 |
-
from get_gemini_keys import get_gemini_keys
|
8 |
from loguru import logger
|
9 |
-
from smolagents import HfApiModel, LiteLLMRouterModel
|
|
|
|
|
10 |
|
11 |
|
12 |
def get_model(cat: str = "hf", provider=None, model_id=None):
|
@@ -14,13 +16,26 @@ def get_model(cat: str = "hf", provider=None, model_id=None):
|
|
14 |
Create and return a model.
|
15 |
|
16 |
Args:
|
17 |
-
cat: category
|
18 |
provider: for HfApiModel (cat='hf')
|
19 |
model_id: model name
|
20 |
|
21 |
if no gemini_api_keys, return HfApiModel()
|
22 |
|
23 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
if cat.lower() in ["gemini"]:
|
25 |
# get gemini_api_keys
|
26 |
# dedup
|
@@ -33,15 +48,6 @@ def get_model(cat: str = "hf", provider=None, model_id=None):
|
|
33 |
logger.info(" set gemini but return HfApiModel()")
|
34 |
return HfApiModel()
|
35 |
|
36 |
-
# setup proxy for gemini and for golay (local)
|
37 |
-
if "golay" in node():
|
38 |
-
os.environ.update(
|
39 |
-
HTTPS_PROXY="http://localhost:8081",
|
40 |
-
HTTP_PROXY="http://localhost:8081",
|
41 |
-
ALL_PROXY="http://localhost:8081",
|
42 |
-
NO_PROXY="localhost,127.0.0.1,oracle",
|
43 |
-
)
|
44 |
-
|
45 |
if model_id is None:
|
46 |
model_id = "gemini-2.5-flash-preview-04-17"
|
47 |
|
@@ -69,27 +75,27 @@ def get_model(cat: str = "hf", provider=None, model_id=None):
|
|
69 |
},
|
70 |
},
|
71 |
]
|
72 |
-
|
73 |
# gemma-3-27b-it
|
74 |
llm_loadbalancer_model_list_gemma = [
|
75 |
{
|
76 |
"model_name": "model-group-3",
|
77 |
"litellm_params": {
|
78 |
-
"model":
|
79 |
"api_key": os.getenv("GEMINI_API_KEY") },
|
80 |
},
|
81 |
]
|
82 |
-
|
83 |
fallbacks = []
|
84 |
model_list = llm_loadbalancer_model_list_gemini
|
85 |
if os.getenv("SILICONFLOW_API_KEY"):
|
86 |
fallbacks = [{"model-group-1": "model-group-2"}]
|
87 |
model_list += llm_loadbalancer_model_list_siliconflow
|
88 |
-
|
89 |
model_list += llm_loadbalancer_model_list_gemma
|
90 |
fallbacks13 = [{"model-group-1": "model-group-3"}]
|
91 |
fallbacks31 = [{"model-group-3": "model-group-1"}]
|
92 |
-
|
93 |
model = LiteLLMRouterModel(
|
94 |
model_id="model-group-1",
|
95 |
model_list=model_list,
|
@@ -108,6 +114,24 @@ def get_model(cat: str = "hf", provider=None, model_id=None):
|
|
108 |
|
109 |
return model
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
logger.info(" default return default HfApiModel(provider=None, model_id=None)")
|
112 |
# if cat.lower() in ["hf"]: default
|
113 |
return HfApiModel(provider=provider, model_id=model_id)
|
|
|
1 |
"""Create and return a model."""
|
2 |
+
# ruff: noqa: F841
|
3 |
|
4 |
import os
|
5 |
import re
|
6 |
from platform import node
|
7 |
|
|
|
8 |
from loguru import logger
|
9 |
+
from smolagents import HfApiModel, LiteLLMRouterModel, OpenAIServerModel
|
10 |
+
|
11 |
+
from get_gemini_keys import get_gemini_keys
|
12 |
|
13 |
|
14 |
def get_model(cat: str = "hf", provider=None, model_id=None):
|
|
|
16 |
Create and return a model.
|
17 |
|
18 |
Args:
|
19 |
+
cat: category, hf, gemin, llama (default and fallback: hf)
|
20 |
provider: for HfApiModel (cat='hf')
|
21 |
model_id: model name
|
22 |
|
23 |
if no gemini_api_keys, return HfApiModel()
|
24 |
|
25 |
"""
|
26 |
+
if cat.lower() in ["hf"]:
|
27 |
+
logger.info(" usiing HfApiModel, make sure you set HF_TOKEN")
|
28 |
+
return HfApiModel(provider=provider, model_id=model_id)
|
29 |
+
|
30 |
+
# setup proxy for gemini and for golay (local tetsin)
|
31 |
+
if "golay" in node() and cat.lower() in ["gemini", "llama"]:
|
32 |
+
os.environ.update(
|
33 |
+
HTTPS_PROXY="http://localhost:8081",
|
34 |
+
HTTP_PROXY="http://localhost:8081",
|
35 |
+
ALL_PROXY="http://localhost:8081",
|
36 |
+
NO_PROXY="localhost,127.0.0.1",
|
37 |
+
)
|
38 |
+
|
39 |
if cat.lower() in ["gemini"]:
|
40 |
# get gemini_api_keys
|
41 |
# dedup
|
|
|
48 |
logger.info(" set gemini but return HfApiModel()")
|
49 |
return HfApiModel()
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
if model_id is None:
|
52 |
model_id = "gemini-2.5-flash-preview-04-17"
|
53 |
|
|
|
75 |
},
|
76 |
},
|
77 |
]
|
78 |
+
|
79 |
# gemma-3-27b-it
|
80 |
llm_loadbalancer_model_list_gemma = [
|
81 |
{
|
82 |
"model_name": "model-group-3",
|
83 |
"litellm_params": {
|
84 |
+
"model": "gemini/gemma-3-27b-it",
|
85 |
"api_key": os.getenv("GEMINI_API_KEY") },
|
86 |
},
|
87 |
]
|
88 |
+
|
89 |
fallbacks = []
|
90 |
model_list = llm_loadbalancer_model_list_gemini
|
91 |
if os.getenv("SILICONFLOW_API_KEY"):
|
92 |
fallbacks = [{"model-group-1": "model-group-2"}]
|
93 |
model_list += llm_loadbalancer_model_list_siliconflow
|
94 |
+
|
95 |
model_list += llm_loadbalancer_model_list_gemma
|
96 |
fallbacks13 = [{"model-group-1": "model-group-3"}]
|
97 |
fallbacks31 = [{"model-group-3": "model-group-1"}]
|
98 |
+
|
99 |
model = LiteLLMRouterModel(
|
100 |
model_id="model-group-1",
|
101 |
model_list=model_list,
|
|
|
114 |
|
115 |
return model
|
116 |
|
117 |
+
if cat.lower() in ["llama"]:
|
118 |
+
api_key = os.getenv("LLAMA_API_KEY")
|
119 |
+
if api_key is None:
|
120 |
+
logger.warning(" LLAMA_API_EY not set, using HfApiModel(), make sure you set HF_TOKEN")
|
121 |
+
return HfApiModel()
|
122 |
+
|
123 |
+
# default model_id
|
124 |
+
if model_id is None:
|
125 |
+
model_id = "Llama-4-Maverick-17B-128E-Instruct-FP8"
|
126 |
+
model_id = "Llama-4-Scout-17B-16E-Instruct-FP8"
|
127 |
+
model_llama = OpenAIServerModel(
|
128 |
+
model_id,
|
129 |
+
api_base="https://api.llama.com/compat/v1",
|
130 |
+
api_key=api_key,
|
131 |
+
# temperature=0.,
|
132 |
+
)
|
133 |
+
return model_llama
|
134 |
+
|
135 |
logger.info(" default return default HfApiModel(provider=None, model_id=None)")
|
136 |
# if cat.lower() in ["hf"]: default
|
137 |
return HfApiModel(provider=provider, model_id=model_id)
|