# pylint: disable=line-too-long,missing-module-docstring,missing-class-docstring,missing-function-docstring,broad-exception-caught, unused-variable, too-many-statements,too-many-return-statements,too-many-locals,redefined-builtin,unused-import # ruff: noqa: F401 import os import typing from dataclasses import dataclass, field import pandas as pd import requests import rich import smolagents from get_model import get_model from loguru import logger from smolagents import CodeAgent, DuckDuckGoSearchTool, FinalAnswerTool, HfApiModel, VisitWebpageTool print = rich.get_console().print DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" SPACE_ID = os.getenv("SPACE_ID", "mikeee/final-assignment") AUTHORIZED_IMPORTS = [ "requests", "zipfile", "pandas", "numpy", "sympy", "json", "bs4", "pubchempy", "xml", "yahoo_finance", "Bio", "sklearn", "scipy", "pydub", "PIL", "chess", "PyPDF2", "pptx", "torch", "datetime", "fractions", "csv", "io", "glob", ] @dataclass class BasicAgent: model: smolagents.models.Model = HfApiModel() tools: list = field(default_factory=lambda: []) # def __init__(self): def __post_init__(self): """Run post_init.""" logger.debug("BasicAgent initialized.") self.agent = CodeAgent( tools=self.tools, model=self.model, verbosity_level=3, additional_authorized_imports=AUTHORIZED_IMPORTS, planning_interval=4, ) def get_answer(self, question: str): return f"ans to {question[:220]}..." def __call__(self, question: str) -> str: # print(f"Agent received question (first 50 chars): {question[:50]}...") print(f"Agent received question: {question}...") # fixed_answer = "This is a default answer." # print(f"Agent returning fixed answer: {fixed_answer}") # return fixed_answer try: # answer = self.get_answer(question) answer = self.agent(question) except Exception as e: logger.error(e) answer = str(e)[:10] + "..." return answer def main(): api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" # noqa # username = "mikeee" # repo_name = "final-assignment" username, _, repo_name = SPACE_ID.partition("/") space_id = f"{username}/{repo_name}" model = get_model(cat="gemini") # 1. Instantiate Agent ( modify this part to create your agent) try: # agent = BasicAgent() agent = BasicAgent( model=model, tools=[ DuckDuckGoSearchTool(), VisitWebpageTool(), FinalAnswerTool(), ] ) agent.agent.visualize() except Exception as e: print(f"Error instantiating agent: {e}") return f"Error initializing agent: {e}", None # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" print(agent_code) # 2. Fetch Questions print(f"Fetching questions from: {questions_url}") try: response = requests.get(questions_url, timeout=30) response.raise_for_status() questions_data = response.json() if not questions_data: print("Fetched questions list is empty.") return "Fetched questions list is empty or invalid format.", None print(f"Fetched {len(questions_data)} questions.") except requests.exceptions.JSONDecodeError as e: print(f"Error decoding JSON response from questions endpoint: {e}") print(f"Response text: {response.text[:500]}") return f"Error decoding server response for questions: {e}", None except requests.exceptions.RequestException as e: print(f"Error fetching questions: {e}") return f"Error fetching questions: {e}", None except Exception as e: print(f"An unexpected error occurred fetching questions: {e}") return f"An unexpected error occurred fetching questions: {e}", None # 3. Run your Agent results_log = [] answers_payload = [] print(f"Running agent on {len(questions_data)} questions...") # for item in questions_data: for item in questions_data[-1:]: task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: print(f"Skipping item with missing task_id or question: {item}") continue try: submitted_answer = agent(question_text) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) except Exception as e: print(f"Error running agent on task {task_id}: {e}") results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) if not answers_payload: print("Agent did not produce any answers to submit.") return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) # 4. Prepare Submission submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} # noqa status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." print(status_update) print(answers_payload) agent.agent.visualize() return None, None if __name__ == "__main__": main()