ggml-vicuna-1.1 / app.py
mikeee's picture
Create app.py
e48067e
import os
import urllib.request
import gradio as gr
from llama_cpp import Llama
def download_file(file_link, filename):
# Checks if the file already exists before downloading
if not os.path.isfile(filename):
urllib.request.urlretrieve(file_link, filename)
print("File downloaded successfully.")
else:
print("File already exists.")
# Dowloading GGML model from HuggingFace
ggml_model_path = "https://huggingface.co/CRD716/ggml-vicuna-1.1-quantized/resolve/main/ggml-vicuna-7b-1.1-q4_1.bin"
filename = "ggml-vicuna-7b-1.1-q4_1.bin"
download_file(ggml_model_path, filename)
llm = Llama(model_path=filename, n_ctx=512, n_batch=126)
def generate_text(prompt="Who is the CEO of Apple?"):
output = llm(
prompt,
max_tokens=256,
temperature=0.1,
top_p=0.5,
echo=False,
stop=["#"],
)
output_text = output["choices"][0]["text"].strip()
# Remove Prompt Echo from Generated Text
cleaned_output_text = output_text.replace(prompt, "")
return cleaned_output_text
description = "Vicuna-7B"
examples = [
'鲁迅和周树人什么关系?',
'In America where cars are important 翻成中文,列出3个版本',
["What is the capital of France?", "The capital of France is Paris."],
[
"Who wrote the novel 'Pride and Prejudice'?",
"The novel 'Pride and Prejudice' was written by Jane Austen.",
],
["What is the square root of 64?", "The square root of 64 is 8."],
]
gradio_interface = gr.Interface(
fn=generate_text,
inputs="text",
outputs="text",
examples=examples,
title="Vicuna-7B",
)
gradio_interface.launch()