|
"""Refer to https://github.com/abacaj/mpt-30B-inference/blob/main/download_model.py.""" |
|
|
|
import os |
|
import time |
|
from dataclasses import asdict, dataclass |
|
from types import SimpleNamespace |
|
|
|
import gradio as gr |
|
from ctransformers import AutoConfig, AutoModelForCausalLM |
|
|
|
from mcli import predict |
|
from huggingface_hub import hf_hub_download |
|
from loguru import logger |
|
|
|
URL = os.getenv("URL", "") |
|
MOSAICML_API_KEY = os.getenv("MOSAICML_API_KEY", "") |
|
if URL is None: |
|
raise ValueError("URL environment variable must be set") |
|
if MOSAICML_API_KEY is None: |
|
raise ValueError("git environment variable must be set") |
|
|
|
ns = SimpleNamespace(response="") |
|
|
|
def predict0(prompt, bot): |
|
|
|
logger.debug(f"{prompt=}, {bot=}") |
|
ns.response = "" |
|
try: |
|
user_prompt = prompt |
|
generator = generate(llm, generation_config, system_prompt, user_prompt.strip()) |
|
print(assistant_prefix, end=" ", flush=True) |
|
|
|
response = "" |
|
buff.update(value="diggin...") |
|
for word in generator: |
|
print(word, end="", flush=True) |
|
response += word |
|
ns.response = response |
|
buff.update(value=response) |
|
print("") |
|
logger.debug(f"{response=}") |
|
except Exception as exc: |
|
logger.error(exc) |
|
response = f"{exc=}" |
|
|
|
bot = [(prompt, response)] |
|
|
|
return prompt, bot |
|
|
|
def predict_api(prompt): |
|
logger.debug(f"{prompt=}") |
|
ns.response = "" |
|
try: |
|
user_prompt = prompt |
|
generator = generate(llm, generation_config, system_prompt, user_prompt.strip()) |
|
print(assistant_prefix, end=" ", flush=True) |
|
|
|
response = "" |
|
buff.update(value="diggin...") |
|
for word in generator: |
|
print(word, end="", flush=True) |
|
response += word |
|
ns.response = response |
|
buff.update(value=response) |
|
print("") |
|
logger.debug(f"{response=}") |
|
except Exception as exc: |
|
logger.error(exc) |
|
response = f"{exc=}" |
|
|
|
|
|
|
|
return response |
|
|
|
def download_mpt_quant(destination_folder: str, repo_id: str, model_filename: str): |
|
local_path = os.path.abspath(destination_folder) |
|
return hf_hub_download( |
|
repo_id=repo_id, |
|
filename=model_filename, |
|
local_dir=local_path, |
|
local_dir_use_symlinks=True, |
|
) |
|
|
|
|
|
@dataclass |
|
class GenerationConfig: |
|
temperature: float |
|
top_k: int |
|
top_p: float |
|
repetition_penalty: float |
|
max_new_tokens: int |
|
seed: int |
|
reset: bool |
|
stream: bool |
|
threads: int |
|
stop: list[str] |
|
|
|
|
|
def format_prompt(system_prompt: str, user_prompt: str): |
|
"""format prompt based on: https://huggingface.co/spaces/mosaicml/mpt-30b-chat/blob/main/app.py""" |
|
|
|
system_prompt = f"<|im_start|>system\n{system_prompt}<|im_end|>\n" |
|
user_prompt = f"<|im_start|>user\n{user_prompt}<|im_end|>\n" |
|
assistant_prompt = "<|im_start|>assistant\n" |
|
|
|
return f"{system_prompt}{user_prompt}{assistant_prompt}" |
|
|
|
|
|
def generate( |
|
llm: AutoModelForCausalLM, |
|
generation_config: GenerationConfig, |
|
system_prompt: str, |
|
user_prompt: str, |
|
): |
|
"""run model inference, will return a Generator if streaming is true""" |
|
|
|
return llm( |
|
format_prompt( |
|
system_prompt, |
|
user_prompt, |
|
), |
|
**asdict(generation_config), |
|
) |
|
|
|
|
|
class Chat: |
|
default_system_prompt = "A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers." |
|
system_format = "<|im_start|>system\n{}<|im_end|>\n" |
|
|
|
def __init__( |
|
self, system: str = None, user: str = None, assistant: str = None |
|
) -> None: |
|
if system is not None: |
|
self.set_system_prompt(system) |
|
else: |
|
self.reset_system_prompt() |
|
self.user = user if user else "<|im_start|>user\n{}<|im_end|>\n" |
|
self.assistant = ( |
|
assistant if assistant else "<|im_start|>assistant\n{}<|im_end|>\n" |
|
) |
|
self.response_prefix = self.assistant.split("{}", maxsplit=1)[0] |
|
|
|
def set_system_prompt(self, system_prompt): |
|
|
|
return system_prompt |
|
|
|
def reset_system_prompt(self): |
|
return self.set_system_prompt(self.default_system_prompt) |
|
|
|
def history_as_formatted_str(self, system, history) -> str: |
|
system = self.system_format.format(system) |
|
text = system + "".join( |
|
[ |
|
"\n".join( |
|
[ |
|
self.user.format(item[0]), |
|
self.assistant.format(item[1]), |
|
] |
|
) |
|
for item in history[:-1] |
|
] |
|
) |
|
text += self.user.format(history[-1][0]) |
|
text += self.response_prefix |
|
|
|
if len(text) > 4500: |
|
|
|
|
|
start = text.find("<|im_start|>", 139) |
|
end = text.find("<|im_end|>", 139) |
|
while end < len(text) and len(text) > 4500: |
|
end = text.find("<|im_end|>", end + 1) |
|
text = text[:start] + text[end + 1 :] |
|
if len(text) > 4500: |
|
|
|
|
|
text = text[-4500:] |
|
|
|
return text |
|
|
|
def clear_history(self, history): |
|
return [] |
|
|
|
def turn(self, user_input: str): |
|
self.user_turn(user_input) |
|
return self.bot_turn() |
|
|
|
def user_turn(self, user_input: str, history): |
|
history.append([user_input, ""]) |
|
return user_input, history |
|
|
|
def bot_turn(self, system, history): |
|
conversation = self.history_as_formatted_str(system, history) |
|
assistant_response = call_inf_server(conversation) |
|
history[-1][-1] = assistant_response |
|
print(system) |
|
print(history) |
|
return "", history |
|
|
|
|
|
def call_inf_server(prompt): |
|
try: |
|
response = predict( |
|
URL, |
|
{"inputs": [prompt], "temperature": 0.2, "top_p": 0.9, "output_len": 512}, |
|
timeout=70, |
|
) |
|
|
|
|
|
response = response["outputs"][0] |
|
|
|
|
|
spl_tokens = ["<|im_start|>", "<|im_end|>"] |
|
clean_prompt = prompt.replace(spl_tokens[0], "").replace(spl_tokens[1], "") |
|
|
|
|
|
try: |
|
user_prompt = prompt |
|
generator = generate(llm, generation_config, system_prompt, user_prompt.strip()) |
|
print(assistant_prefix, end=" ", flush=True) |
|
for word in generator: |
|
print(word, end="", flush=True) |
|
print("") |
|
response = word |
|
except Exception as exc: |
|
logger.error(exc) |
|
response = f"{exc=}" |
|
return response |
|
|
|
except Exception as e: |
|
|
|
|
|
print(e) |
|
time.sleep(1) |
|
response = predict( |
|
URL, |
|
{"inputs": [prompt], "temperature": 0.2, "top_p": 0.9, "output_len": 512}, |
|
timeout=70, |
|
) |
|
|
|
response = response["outputs"][0] |
|
return response[len(prompt) :] |
|
|
|
|
|
logger.info("start dl") |
|
_ = """full url: https://huggingface.co/TheBloke/mpt-30B-chat-GGML/blob/main/mpt-30b-chat.ggmlv0.q4_1.bin""" |
|
|
|
repo_id = "TheBloke/mpt-30B-chat-GGML" |
|
|
|
|
|
_ = """ |
|
mpt-30b-chat.ggmlv0.q4_0.bin q4_0 4 16.85 GB 19.35 GB 4-bit. |
|
mpt-30b-chat.ggmlv0.q4_1.bin q4_1 4 18.73 GB 21.23 GB 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
|
mpt-30b-chat.ggmlv0.q5_0.bin q5_0 5 20.60 GB 23.10 GB |
|
mpt-30b-chat.ggmlv0.q5_1.bin q5_1 5 22.47 GB 24.97 GB |
|
mpt-30b-chat.ggmlv0.q8_0.bin q8_0 8 31.83 GB 34.33 GB |
|
""" |
|
model_filename = "mpt-30b-chat.ggmlv0.q4_1.bin" |
|
model_filename = "mpt-30b-chat.ggmlv0.q5_1.bin" |
|
destination_folder = "models" |
|
|
|
download_mpt_quant(destination_folder, repo_id, model_filename) |
|
|
|
logger.info("done dl") |
|
|
|
config = AutoConfig.from_pretrained("mosaicml/mpt-30b-chat", context_length=8192) |
|
llm = AutoModelForCausalLM.from_pretrained( |
|
os.path.abspath(f"models/{model_filename}"), |
|
model_type="mpt", |
|
config=config, |
|
) |
|
|
|
system_prompt = "A conversation between a user and an LLM-based AI assistant named Local Assistant. Local Assistant gives helpful and honest answers." |
|
|
|
generation_config = GenerationConfig( |
|
temperature=0.2, |
|
top_k=0, |
|
top_p=0.9, |
|
repetition_penalty=1.0, |
|
max_new_tokens=512, |
|
seed=42, |
|
reset=False, |
|
stream=True, |
|
threads=int(os.cpu_count() / 2), |
|
stop=["<|im_end|>", "|<"], |
|
) |
|
|
|
user_prefix = "[user]: " |
|
assistant_prefix = "[assistant]: " |
|
|
|
|
|
css = """ |
|
.importantButton { |
|
background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important; |
|
border: none !important; |
|
} |
|
.importantButton:hover { |
|
background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important; |
|
border: none !important; |
|
} |
|
.disclaimer {font-variant-caps: all-small-caps; font-size: xx-small;} |
|
.xsmall {font-size: x-small;} |
|
""" |
|
|
|
with gr.Blocks( |
|
title="mpt-30b-chat-ggml-5bit-1", |
|
theme=gr.themes.Soft(text_size="sm"), |
|
css=css, |
|
) as block: |
|
with gr.Accordion("🎈 Info", open=False): |
|
gr.HTML( |
|
"""<center><a href="https://huggingface.co/spaces/mikeee/mpt-30b-chat?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate"></a> and spin a CPU UPGRADE to avoid the queue</center>""" |
|
) |
|
gr.Markdown( |
|
"""<h4><center>mpt-30b-chat-ggml-5bit-1</center></h4> |
|
|
|
This demo is of [TheBloke/mpt-30B-chat-GGML](https://huggingface.co/TheBloke/mpt-30B-chat-GGML). |
|
|
|
It takes about >40 seconds to get a response. Restarting the space takes about 5 minutes if the space is asleep due to inactivity. If the space crashes for some reason, it will also take about 5 minutes to restart. You need to refresh the browser to reload the new space. |
|
""", |
|
elem_classes="xsmall" |
|
) |
|
conversation = Chat() |
|
chatbot = gr.Chatbot().style(height=700) |
|
buff = gr.Textbox(show_label=False) |
|
with gr.Row(): |
|
with gr.Column(): |
|
msg = gr.Textbox( |
|
label="Chat Message Box", |
|
placeholder="Ask me anything (press Enter or click Submit to send)", |
|
show_label=False, |
|
).style(container=False) |
|
with gr.Column(): |
|
with gr.Row(): |
|
submit = gr.Button("Submit", elem_classes="xsmall") |
|
stop = gr.Button("Stop", visible=False) |
|
clear = gr.Button("Clear", visible=False) |
|
with gr.Row(visible=False): |
|
with gr.Accordion("Advanced Options:", open=False): |
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
system = gr.Textbox( |
|
label="System Prompt", |
|
value=Chat.default_system_prompt, |
|
show_label=False, |
|
).style(container=False) |
|
with gr.Column(): |
|
with gr.Row(): |
|
change = gr.Button("Change System Prompt") |
|
reset = gr.Button("Reset System Prompt") |
|
|
|
with gr.Accordion("Example inputs", open=True): |
|
etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """ |
|
examples = gr.Examples( |
|
examples=[ |
|
["Explain the plot of Cinderella in a sentence."], |
|
[ |
|
"How long does it take to become proficient in French, and what are the best methods for retaining information?" |
|
], |
|
["What are some common mistakes to avoid when writing code?"], |
|
["Build a prompt to generate a beautiful portrait of a horse"], |
|
["Suggest four metaphors to describe the benefits of AI"], |
|
["Write a pop song about leaving home for the sandy beaches."], |
|
["Write a summary demonstrating my ability to tame lions"], |
|
["鲁迅和周树人什么关系"], |
|
["从前有一头牛,这头牛后面有什么?"], |
|
["正无穷大加一大于正无穷大吗?"], |
|
["正无穷大加正无穷大大于正无穷大吗?"], |
|
["-2的平方根等于什么"], |
|
["树上有5只鸟,猎人开枪打死了一只。树上还有几只鸟?"], |
|
["树上有11只鸟,猎人开枪打死了一只。树上还有几只鸟?提示:需考虑鸟可能受惊吓飞走。"], |
|
["鲁迅和周树人什么关系 用英文回答"], |
|
["以红楼梦的行文风格写一张委婉的请假条。不少于320字。"], |
|
[f"{etext} 翻成中文,列出3个版本"], |
|
[f"{etext} \n 翻成中文,保留原意,但使用文学性的语言。不要写解释。列出3个版本"], |
|
["js 判断一个数是不是质数"], |
|
["js 实现python 的 range(10)"], |
|
["js 实现python 的 [*(range(10)]"], |
|
["假定 1 + 2 = 4, 试求 7 + 8"], |
|
["Erkläre die Handlung von Cinderella in einem Satz."], |
|
["Erkläre die Handlung von Cinderella in einem Satz. Auf Deutsch"], |
|
], |
|
inputs=[msg], |
|
examples_per_page=30, |
|
) |
|
|
|
|
|
with gr.Accordion("Disclaimer", open=False): |
|
gr.Markdown( |
|
"Disclaimer: MPT-30B can produce factually incorrect output, and should not be relied on to produce " |
|
"factually accurate information. MPT-30B was trained on various public datasets; while great efforts " |
|
"have been taken to clean the pretraining data, it is possible that this model could generate lewd, " |
|
"biased, or otherwise offensive outputs.", |
|
elem_classes=["disclaimer"], |
|
) |
|
with gr.Row(visible=False): |
|
gr.Markdown( |
|
"[Privacy policy](https://gist.github.com/samhavens/c29c68cdcd420a9aa0202d0839876dac)", |
|
elem_classes=["disclaimer"], |
|
) |
|
|
|
_ = """ |
|
submit_event = msg.submit( |
|
fn=conversation.user_turn, |
|
inputs=[msg, chatbot], |
|
outputs=[msg, chatbot], |
|
queue=False, |
|
).then( |
|
fn=conversation.bot_turn, |
|
inputs=[system, chatbot], |
|
outputs=[msg, chatbot], |
|
queue=True, |
|
) |
|
submit_click_event = submit.click( |
|
fn=conversation.user_turn, |
|
inputs=[msg, chatbot], |
|
outputs=[msg, chatbot], |
|
queue=False, |
|
).then( |
|
# fn=conversation.bot_turn, |
|
inputs=[system, chatbot], |
|
outputs=[msg, chatbot], |
|
queue=True, |
|
) |
|
|
|
stop.click( |
|
fn=None, |
|
inputs=None, |
|
outputs=None, |
|
cancels=[submit_event, submit_click_event], |
|
queue=False, |
|
) |
|
clear.click(lambda: None, None, chatbot, queue=False).then( |
|
fn=conversation.clear_history, |
|
inputs=[chatbot], |
|
outputs=[chatbot], |
|
queue=False, |
|
) |
|
change.click( |
|
fn=conversation.set_system_prompt, |
|
inputs=[system], |
|
outputs=[system], |
|
queue=False, |
|
) |
|
reset.click( |
|
fn=conversation.reset_system_prompt, |
|
inputs=[], |
|
outputs=[system], |
|
queue=False, |
|
) |
|
# """ |
|
|
|
msg.submit( |
|
|
|
fn=predict0, |
|
inputs=[msg, chatbot], |
|
outputs=[msg, chatbot], |
|
queue=True, |
|
show_progress="full", |
|
api_name="predict" |
|
) |
|
submit.click( |
|
|
|
fn=predict0, |
|
inputs=[msg, chatbot], |
|
outputs=[msg, chatbot], |
|
queue=True, |
|
show_progress="full", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Accordion("For Chat/Translation API", open=False, visible=False): |
|
input_text = gr.Text() |
|
api_btn = gr.Button("Go", variant="primary") |
|
out_text = gr.Text() |
|
api_btn.click( |
|
predict_api, |
|
input_text, |
|
out_text, |
|
|
|
api_name="api", |
|
) |
|
|
|
|
|
|
|
block.queue(concurrency_count=5, max_size=20).launch(debug=True) |
|
|