Spaces:
Running
on
T4
Running
on
T4
File size: 11,431 Bytes
4bef18d a27c4fb 4bef18d a27c4fb 4bef18d 7725b42 4bef18d 7725b42 4bef18d a27c4fb 7725b42 a27c4fb 7725b42 4bef18d d84480c 4bef18d f5c4b5c 4bef18d 558796e 4bef18d 558796e f5c4b5c 558796e 4bef18d 558796e 4bef18d 41e9e77 558796e 4bef18d 7ea83b4 4bef18d d84480c 4bef18d 558796e 4bef18d d84480c 4bef18d 558796e 4bef18d 7725b42 4bef18d 7725b42 4bef18d 7725b42 4bef18d 7725b42 4bef18d 7725b42 4bef18d 103cf8f 4bef18d 7725b42 4bef18d 7725b42 4bef18d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
"""
Run qwen 7b chat.
transformers 4.31.0
import torch
torch.cuda.empty_cache()
"""
# pylint: disable=line-too-long, invalid-name, no-member, redefined-outer-name, missing-function-docstring, missing-class-docstring, broad-except,
import gc
import os
import time
from collections import deque
from dataclasses import asdict, dataclass
from types import SimpleNamespace
import gradio as gr
import torch
from loguru import logger
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
from example_list import css, example_list
if not torch.cuda.is_available():
raise gr.Error("No cuda, cant continue...")
os.environ["TZ"] = "Asia/Shanghai"
try:
time.tzset() # type: ignore # pylint: disable=no-member
except Exception:
# Windows
logger.warning("Windows, cant run time.tzset()")
model_name = "Qwen/Qwen-7B-Chat"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
n_gpus = torch.cuda.device_count()
try:
_ = f"{int(torch.cuda.mem_get_info()[0]/1024**3)-2}GB"
except AssertionError:
_ = 0
max_memory = {i: _ for i in range(n_gpus)}
def gen_model(model_name: str):
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
device_map="auto",
load_in_4bit=True,
max_memory=max_memory,
fp16=True,
torch_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = model.eval()
model.generation_config = GenerationConfig.from_pretrained(
model_name,
trust_remote_code=True,
)
return model
def user_clear(message, chat_history):
"""Gen a response, clear message in user textbox."""
logger.debug(f"{message=}")
# logger.remove() #to turn on trace
# logger.add(sys.stderr, level="INFO")
logger.trace(f"{chat_history=}")
try:
chat_history.append([message, ""])
except Exception:
chat_history = deque([message, ""], maxlen=5)
return "", chat_history
def user(message, chat_history):
"""Gen a response."""
logger.debug(f"{message=}")
logger.trace(f"{chat_history=}")
try:
chat_history.append([message, ""])
except Exception:
chat_history = deque([message, ""], maxlen=5)
return message, chat_history
# for rerun in tests
model = None
gc.collect()
torch.cuda.empty_cache()
model = gen_model(model_name)
def bot(chat_history, **kwargs):
try:
message = chat_history[-1][0]
except Exception as exc:
logger.error(f"{chat_history=}: {exc}")
return chat_history
logger.debug(f"{chat_history=}")
try:
_ = """
response, chat_history = model.chat(
tokenizer,
message,
history=chat_history,
temperature=0.7,
repetition_penalty=1.2,
# max_length=128,
)
"""
logger.debug("run model.chat...")
model.generation_config.update(**kwargs)
response, chat_history = model.chat(
tokenizer,
message,
chat_history[:-1],
# **kwargs,
)
del response
return chat_history
except Exception as exc:
logger.error(exc)
chat_history[:-1].append(["message", str(exc)])
return chat_history
def bot_stream(chat_history, **kwargs):
try:
message = chat_history[-1][0]
except Exception as exc:
logger.error(f"{chat_history=}: {exc}")
raise gr.Error(f"{chat_history=}")
# yield chat_history
# for elm in model.chat_stream(tokenizer, message, chat_history):
model.generation_config.update(**kwargs)
for elm in model.chat_stream(tokenizer, message, chat_history):
chat_history[-1] = [message, elm]
yield chat_history
SYSTEM_PROMPT = "You are a helpful assistant."
MAX_MAX_NEW_TOKENS = 1024
MAX_NEW_TOKENS = 128
@dataclass
class Config:
max_new_tokens: int = 64
repetition_penalty: float = 1.1
temperature: float = 1.0
top_k: int = 0
top_p: float = 0.9
# stats_default = SimpleNamespace(llm=model, system_prompt=SYSTEM_PROMPT, config=Config())
stats_default = SimpleNamespace(llm=None, system_prompt=SYSTEM_PROMPT, config=Config())
theme = gr.themes.Soft(text_size="sm")
with gr.Blocks(
theme=theme,
title=model_name.lower(),
css=css,
) as block:
stats = gr.State(stats_default)
if not torch.cuda.is_available():
raise gr.Error("GPU not available, cant run. Turn on GPU and restart")
config = asdict(stats.value.config)
def bot_stream_state(chat_history):
return bot_stream(chat_history, **config)
with gr.Accordion("🎈 Info", open=False):
gr.Markdown(
f"""<h5><center>{model_name.lower()}</center></h4>
Set `repetition_penalty` to 2.1 or higher for a chatty conversation. Lower it to 1.1 or smaller if more focused anwsers are desired (for example for translations or fact-oriented queries). Smaller `top_k` probably will result in smoothier sentences.
(`top_k=0` is equivalent to `top_k` equal to very very big though.) Consult `transformers` documentation for more details.
Most examples are meant for another model.
You probably should try to test
some related prompts.""",
elem_classes="xsmall",
)
chatbot = gr.Chatbot(height=500, value=deque([], maxlen=5)) # type: ignore
with gr.Row():
with gr.Column(scale=5):
msg = gr.Textbox(
label="Chat Message Box",
placeholder="Ask me anything (press Shift+Enter or click Submit to send)",
show_label=False,
# container=False,
lines=4,
max_lines=30,
show_copy_button=True,
# ).style(container=False)
)
with gr.Column(scale=1, min_width=50):
with gr.Row():
submit = gr.Button("Submit", elem_classes="xsmall")
stop = gr.Button("Stop", visible=True)
clear = gr.Button("Clear History", visible=True)
msg_submit_event = msg.submit(
# fn=conversation.user_turn,
fn=user,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=True,
show_progress="full",
# api_name=None,
).then(bot_stream_state, chatbot, chatbot, queue=True)
submit_click_event = submit.click(
# fn=lambda x, y: ("",) + user(x, y)[1:], # clear msg
fn=user_clear, # clear msg
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=True,
show_progress="full",
# api_name=None,
).then(bot_stream_state, chatbot, chatbot, queue=True)
stop.click(
fn=None,
inputs=None,
outputs=None,
cancels=[msg_submit_event, submit_click_event],
queue=False,
)
clear.click(lambda: None, None, chatbot, queue=False)
with gr.Accordion(label="Advanced Options", open=False):
system_prompt = gr.Textbox(
label="System prompt",
value=stats_default.system_prompt,
lines=3,
visible=True,
)
max_new_tokens = gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=stats_default.config.max_new_tokens,
)
repetition_penalty = gr.Slider(
label="Repetition penalty",
minimum=0.1,
maximum=40.0,
step=0.1,
value=stats_default.config.repetition_penalty,
)
temperature = gr.Slider(
label="Temperature",
minimum=0.1,
maximum=40.0,
step=0.1,
value=stats_default.config.temperature,
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=stats_default.config.top_p,
)
top_k = gr.Slider(
label="Top-k",
minimum=0,
maximum=1000,
step=1,
value=stats_default.config.top_k,
)
def system_prompt_fn(system_prompt):
stats.value.system_prompt = system_prompt
logger.debug(f"{stats.value.system_prompt=}")
def max_new_tokens_fn(max_new_tokens):
stats.value.config.max_new_tokens = max_new_tokens
logger.debug(f"{stats.value.config.max_new_tokens=}")
def repetition_penalty_fn(repetition_penalty):
stats.value.config.repetition_penalty = repetition_penalty
logger.debug(f"{stats.value=}")
def temperature_fn(temperature):
stats.value.config.temperature = temperature
logger.debug(f"{stats.value=}")
def top_p_fn(top_p):
stats.value.config.top_p = top_p
logger.debug(f"{stats.value=}")
def top_k_fn(top_k):
stats.value.config.top_k = top_k
logger.debug(f"{stats.value=}")
system_prompt.change(system_prompt_fn, system_prompt)
max_new_tokens.change(max_new_tokens_fn, max_new_tokens)
repetition_penalty.change(repetition_penalty_fn, repetition_penalty)
temperature.change(temperature_fn, temperature)
top_p.change(top_p_fn, top_p)
top_k.change(top_k_fn, top_k)
def reset_fn(stats_):
logger.debug("reset_fn")
stats_ = gr.State(stats_default)
logger.debug(f"{stats_.value=}")
return (
stats_,
stats_default.system_prompt,
stats_default.config.max_new_tokens,
stats_default.config.repetition_penalty,
stats_default.config.temperature,
stats_default.config.top_p,
stats_default.config.top_k,
)
reset_btn = gr.Button("Reset")
reset_btn.click(
reset_fn,
stats,
[
stats,
system_prompt,
max_new_tokens,
repetition_penalty,
temperature,
top_p,
top_k,
],
)
with gr.Accordion("Example inputs", open=True):
etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """
examples = gr.Examples(
examples=example_list,
inputs=[msg],
examples_per_page=60,
)
with gr.Accordion("Disclaimer", open=False):
_ = model_name.lower()
gr.Markdown(
f"Disclaimer: {_} can produce factually incorrect output, and should not be relied on to produce "
f"factually accurate information. {_} was trained on various public datasets; while great efforts "
"have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
"biased, or otherwise offensive outputs.",
elem_classes=["disclaimer"],
)
if __name__ == "__main__":
block.queue(max_size=8).launch(debug=True)
|