Spaces:
Running
on
T4
Running
on
T4
File size: 19,039 Bytes
4bef18d a27c4fb 4bef18d c48ba74 a27c4fb 4bef18d fae4857 1d516ba fae4857 4bef18d 7725b42 60d0767 79b022b 7725b42 4bef18d c48ba74 4bef18d c48ba74 4bef18d 60d0767 7725b42 4bef18d dec88ff ca48eff 1d516ba 297f7a4 f8bc02a 1d516ba ca48eff f8bc02a 1d516ba ca48eff 08612a4 ca48eff 4bef18d b55d7c2 a27c4fb 5f4757d 56ad8d6 7725b42 4bef18d 584239a 4bef18d b0c90a1 f924882 56ad8d6 4bef18d d84480c 4bef18d 79b022b 4bef18d c48ba74 4bef18d f5c4b5c 4bef18d 558796e 4bef18d c48ba74 558796e b00e246 5f4757d 558796e f5c4b5c c48ba74 558796e c48ba74 558796e c48ba74 6afaebf 558796e 4bef18d c48ba74 2987cd6 4bef18d 2987cd6 4bef18d 558796e 4bef18d c48ba74 7564484 c48ba74 6afaebf c48ba74 4bef18d 41e9e77 c48ba74 558796e c48ba74 558796e b00e246 4bef18d c48ba74 187485d c48ba74 66acbac c48ba74 ad51515 e8c556f ad51515 c48ba74 ad51515 c48ba74 ad51515 c48ba74 4bef18d d84480c 4bef18d 558796e 4bef18d d84480c 4bef18d 558796e 4bef18d 584239a 4bef18d 7725b42 4bef18d 7725b42 4bef18d 7725b42 4bef18d 7725b42 4bef18d 7725b42 4bef18d 103cf8f 4bef18d 7725b42 4bef18d 7725b42 c48ba74 4bef18d c48ba74 3895ca8 7e9b0c1 3895ca8 60d0767 3895ca8 7e9b0c1 60d0767 4bef18d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 |
"""
Run qwen 7b chat.
transformers 4.31.0
import torch
torch.cuda.empty_cache()
model.chat(
tokenizer: transformers.tokenization_utils.PreTrainedTokenizer,
query: str,
history: Optional[List[Tuple[str, str]]],
system: str = 'You are a helpful assistant.',
append_history: bool = True,
stream: Optional[bool] = <object object at 0x7f905797ec20>,
stop_words_ids: Optional[List[List[int]]] = None,
**kwargs) -> Tuple[str, List[Tuple[str, str]]]
)
model.generation_config
GenerationConfig {
"chat_format": "chatml",
"do_sample": true,
"eos_token_id": 151643,
"max_new_tokens": 512,
"max_window_size": 6144,
"pad_token_id": 151643,
"top_k": 0,
"top_p": 0.5,
"transformers_version": "4.31.0",
"trust_remote_code": true
}
"""
# pylint: disable=line-too-long, invalid-name, no-member, redefined-outer-name, missing-function-docstring, missing-class-docstring, broad-except,
from run_cmd import run_cmd # noqa
# autodl with cuda12 NVIDIA-SMI appears
# 525.105.17 Driver Version: 525.105.17 CUDA Version: 12.0
# no fix needed
# clumsy fix for hf overwrite libbitsandbytes_cpu.so with libbitsandbytes_cuda118.so
run_cmd(
"cd /home/user/.pyenv/versions/3.10.13/lib/python3.10/site-packages/bitsandbytes; cp libbitsandbytes_cuda118.so libbitsandbytes_cpu.so"
) # noqa
import gc
import os
import subprocess as sp
import sys
import time
from collections import deque
from dataclasses import asdict, dataclass
from textwrap import dedent
from types import SimpleNamespace
from typing import List, Optional
import gradio as gr
import rich
import torch
from loguru import logger
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
from example_list import css, example_list
os.environ["TZ"] = "Asia/Shanghai"
try:
time.tzset() # type: ignore # pylint: disable=no-member
except Exception:
# Windows
logger.warning("Windows, cant run time.tzset()")
if True:
run_cmd(
"ls -rtl /home/user/.pyenv/versions/3.10.13/lib/python3.10/site-packages/bitsandbytes"
)
logger.info("lsb_release -a")
ret = sp.run("lsb_release -a", capture_output=1, check=0, shell=1, encoding="utf8")
if ret.stdout:
rich.print(ret.stdout)
if ret.stderr:
rich.print("[red bold]" + ret.stdout)
logger.info("nvidia-smi")
ret = sp.run("nvidia-smi", capture_output=1, check=0, shell=1, encoding="utf8")
if ret.stdout:
rich.print(ret.stdout)
if ret.stderr:
rich.print("[red bold]" + ret.stdout)
# raise SystemExit("Interrupt by intentioin")
if not torch.cuda.is_available():
raise gr.Error("torch.cuda.is_available() is False, cant continue...")
model_name = "tangger/Qwen-7B-Chat" # try
model_name = "Qwen/Qwen-7B-Chat" # gone!
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
n_gpus = torch.cuda.device_count()
try:
_ = f"{int(torch.cuda.mem_get_info()[0]/1024**3)-2}GB"
except AssertionError:
_ = 0
max_memory = {i: _ for i in range(n_gpus)}
del sys
# logger.remove() # to turn on trace
# logger.add(sys.stderr, level="TRACE")
# logger.trace(f"{chat_history=}")
def gen_model(model_name: str):
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
# device_map="auto",
device_map={"": 0},
# load_in_4bit=True,
load_in_8bit=True,
max_memory=max_memory,
fp16=True,
torch_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = model.eval()
model.generation_config = GenerationConfig.from_pretrained(
model_name,
trust_remote_code=True,
)
return model
def user_clear(message, chat_history):
"""Gen a response, clear message in user textbox."""
logger.debug(f"{message=}")
try:
chat_history.append([message, ""])
except Exception:
chat_history = deque([message, ""], maxlen=5)
logger.trace(f"{chat_history=}")
return "", chat_history
def user(message, chat_history):
"""Gen a response."""
logger.debug(f"{message=}")
logger.trace(f"{chat_history=}")
try:
chat_history.append([message, ""])
except Exception:
chat_history = deque([message, ""], maxlen=5)
return message, chat_history
# for rerun in tests
model = None
gc.collect()
torch.cuda.empty_cache()
if not torch.cuda.is_available():
# raise gr.Error("GPU not available, cant run. Turn on GPU and retry")
raise SystemExit("GPU not available, cant run. Turn on GPU and retry")
model = gen_model(model_name)
def bot(chat_history, **kwargs):
try:
message = chat_history[-1][0]
except Exception as exc:
logger.error(f"{chat_history=}: {exc}")
return chat_history
logger.debug(f"{chat_history=}")
try:
_ = """
response, chat_history = model.chat(
tokenizer,
message,
history=chat_history,
temperature=0.7,
repetition_penalty=1.2,
# max_length=128,
)
"""
logger.debug("run model.chat...")
model.generation_config.update(**kwargs)
response, chat_history = model.chat(
tokenizer,
message,
chat_history[:-1],
# **kwargs,
)
del response
return chat_history
except Exception as exc:
logger.error(exc)
chat_history[:-1].append(["message", str(exc)])
return chat_history
def bot_stream(chat_history, **kwargs):
logger.trace(f"{kwargs=}")
# somehow, empty chat_history
if chat_history is None or not chat_history:
logger.trace(f" *** {chat_history=}")
chat_history.append(["", ""])
try:
message = chat_history[-1][0]
except Exception as exc:
logger.error(f"{chat_history=}: {exc}")
raise gr.Error(f"{chat_history=}")
# yield chat_history
# for elm in model.chat_stream(tokenizer, message, chat_history):
model.generation_config.update(**kwargs)
response = ""
for elm in model.chat_stream(tokenizer, message, chat_history):
chat_history[-1] = [message, elm]
response = elm
yield chat_history
logger.debug(f"{response=}")
logger.debug(f"{model.generation_config=}")
SYSTEM_PROMPT = "You are a helpful assistant."
MAX_MAX_NEW_TOKENS = 2048 # sequence length 2048
MAX_NEW_TOKENS = 256
@dataclass
class Config:
max_new_tokens: int = MAX_NEW_TOKENS
repetition_penalty: float = 1.1
temperature: float = 1.0
top_k: int = 0
top_p: float = 0.9
# stats_default = SimpleNamespace(llm=model, system_prompt=SYSTEM_PROMPT, config=Config())
stats_default = SimpleNamespace(llm=None, system_prompt=SYSTEM_PROMPT, config=Config())
# input max_new_tokens temperature repetition_penalty top_k top_p system_prompt history
def api_fn( # pylint: disable=too-many-arguments
input_text: Optional[str],
# max_length: int = 256,
max_new_tokens: int = stats_default.config.max_new_tokens,
temperature: float = stats_default.config.temperature,
repetition_penalty: float = stats_default.config.repetition_penalty,
top_k: int = stats_default.config.top_k,
top_p: int = stats_default.config.top_p,
system_prompt: Optional[str] = None,
history: Optional[List[str]] = None,
):
if input_text is None:
input_text = ""
try:
input_text = str(input_text).strip()
except Exception as exc:
logger.error(exc)
input_text = ""
if not input_text:
return ""
if history is None:
history = []
try:
temperature = float(temperature)
except Exception:
temperature = stats_default.config.temperature
if system_prompt is None:
system_prompt = stats_default.system_prompt
# if max_length < 10: max_length = 4096
if max_new_tokens < 10:
max_new_tokens = stats_default.config.max_new_tokens
if top_p < 0.1 or top_p > 1:
top_p = stats_default.config.top_p
if temperature <= 0.5:
temperature = stats_default.config.temperature
_ = {
"max_new_tokens": max_new_tokens,
"temperature": temperature,
"repetition_penalty": repetition_penalty,
"top_k": top_k,
"top_p": top_p,
}
model.generation_config.update(**_)
try:
res, _ = model.chat(
tokenizer,
input_text,
history=history,
# max_length=max_length,
# append_history=False,
)
# logger.debug(f"{res=} \n{_=}")
except Exception as exc:
logger.error(f"{exc=}")
res = str(exc)
logger.debug(f"api {res=}")
logger.debug(f"api {model.generation_config=}")
return res
theme = gr.themes.Soft(text_size="sm")
with gr.Blocks(
theme=theme,
title=model_name.lower(),
css=css,
) as block:
stats = gr.State(stats_default)
# would this reset model?
model.generation_config = GenerationConfig.from_pretrained(
model_name,
trust_remote_code=True,
)
config = asdict(stats.value.config)
def bot_stream_state(chat_history):
logger.trace(f"{chat_history=}")
yield from bot_stream(chat_history, **config)
with gr.Accordion("🎈 Info", open=False):
gr.Markdown(
dedent(
f"""
## {model_name.lower()}
* temperature range: .51 and up; higher temperature implies more randomness. Suggested temperature for chatting and creative writing is around 1.1 while it should be set to 0.51-1.0 for summarizing and translation.
* Set `repetition_penalty` to 2.1 or higher for a chatty conversation (more unpredictable and undesirable output). Lower it to 1.1 or smaller if more focused anwsers are desired (for example for translations or fact-oriented queries).
* Smaller `top_k` probably will result in smoothier sentences.
(`top_k=0` is equivalent to `top_k` equal to very very big though.) Consult `transformers` documentation for more details.
* An API is available at https://mikeee-qwen-7b-chat.hf.space/ that can be queried, e.g., in python
```python
from gradio_client import Client
client = Client("https://mikeee-qwen-7b-chat.hf.space/")
result = client.predict(
"你好!", # user prompt
256, # max_new_tokens
1.2, # temperature
1.1, # repetition_penalty
0, # top_k
0.9, # top_p
"You are a helpful assistant.", # system_prompt
None, # history
api_name="/api"
)
print(result)
```
or in javascript
```js
import {{ client }} from "@gradio/client";
const app = await client("https://mikeee-qwen-7b-chat.hf.space/");
const result = await app.predict("api", [...]);
console.log(result.data);
```
Check documentation and examples by clicking `Use via API` at the very bottom of [https://huggingface.co/spaces/mikeee/qwen-7b-chat](https://huggingface.co/spaces/mikeee/qwen-7b-chat).
<p></p>
Most examples are meant for another model.
You probably should try to test
some related prompts. System prompt can be changed in Advaned Options as well."""
),
elem_classes="xsmall",
)
chatbot = gr.Chatbot(height=500, value=deque([], maxlen=5)) # type: ignore
with gr.Row():
with gr.Column(scale=5):
msg = gr.Textbox(
label="Chat Message Box",
placeholder="Ask me anything (press Shift+Enter or click Submit to send)",
show_label=False,
# container=False,
lines=4,
max_lines=30,
show_copy_button=True,
# ).style(container=False)
)
with gr.Column(scale=1, min_width=50):
with gr.Row():
submit = gr.Button("Submit", elem_classes="xsmall")
stop = gr.Button("Stop", visible=True)
clear = gr.Button("Clear History", visible=True)
msg_submit_event = msg.submit(
# fn=conversation.user_turn,
fn=user,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=True,
show_progress="full",
# api_name=None,
).then(bot_stream_state, chatbot, chatbot, queue=True)
submit_click_event = submit.click(
# fn=lambda x, y: ("",) + user(x, y)[1:], # clear msg
fn=user_clear, # clear msg
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=True,
show_progress="full",
# api_name=None,
).then(bot_stream_state, chatbot, chatbot, queue=True)
stop.click(
fn=None,
inputs=None,
outputs=None,
cancels=[msg_submit_event, submit_click_event],
queue=False,
)
clear.click(lambda: None, None, chatbot, queue=False)
with gr.Accordion(label="Advanced Options", open=False):
system_prompt = gr.Textbox(
label="System prompt",
value=stats_default.system_prompt,
lines=3,
visible=True,
)
max_new_tokens = gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=stats_default.config.max_new_tokens,
)
repetition_penalty = gr.Slider(
label="Repetition penalty",
minimum=0.1,
maximum=40.0,
step=0.1,
value=stats_default.config.repetition_penalty,
)
temperature = gr.Slider(
label="Temperature",
minimum=0.51,
maximum=40.0,
step=0.1,
value=stats_default.config.temperature,
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=stats_default.config.top_p,
)
top_k = gr.Slider(
label="Top-k",
minimum=0,
maximum=1000,
step=1,
value=stats_default.config.top_k,
)
def system_prompt_fn(system_prompt):
stats.value.system_prompt = system_prompt
logger.debug(f"{stats.value.system_prompt=}")
def max_new_tokens_fn(max_new_tokens):
stats.value.config.max_new_tokens = max_new_tokens
logger.debug(f"{stats.value.config.max_new_tokens=}")
def repetition_penalty_fn(repetition_penalty):
stats.value.config.repetition_penalty = repetition_penalty
logger.debug(f"{stats.value=}")
def temperature_fn(temperature):
stats.value.config.temperature = temperature
logger.debug(f"{stats.value=}")
def top_p_fn(top_p):
stats.value.config.top_p = top_p
logger.debug(f"{stats.value=}")
def top_k_fn(top_k):
stats.value.config.top_k = top_k
logger.debug(f"{stats.value=}")
system_prompt.change(system_prompt_fn, system_prompt)
max_new_tokens.change(max_new_tokens_fn, max_new_tokens)
repetition_penalty.change(repetition_penalty_fn, repetition_penalty)
temperature.change(temperature_fn, temperature)
top_p.change(top_p_fn, top_p)
top_k.change(top_k_fn, top_k)
def reset_fn(stats_):
logger.debug("reset_fn")
stats_ = gr.State(stats_default)
logger.debug(f"{stats_.value=}")
return (
stats_,
stats_default.system_prompt,
stats_default.config.max_new_tokens,
stats_default.config.repetition_penalty,
stats_default.config.temperature,
stats_default.config.top_p,
stats_default.config.top_k,
)
reset_btn = gr.Button("Reset")
reset_btn.click(
reset_fn,
stats,
[
stats,
system_prompt,
max_new_tokens,
repetition_penalty,
temperature,
top_p,
top_k,
],
)
with gr.Accordion("Example inputs", open=True):
etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """
examples = gr.Examples(
examples=example_list,
inputs=[msg],
examples_per_page=60,
)
with gr.Accordion("Disclaimer", open=False):
_ = model_name.lower()
gr.Markdown(
f"Disclaimer: {_} can produce factually incorrect output, and should not be relied on to produce "
f"factually accurate information. {_} was trained on various public datasets; while great efforts "
"have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
"biased, or otherwise offensive outputs.",
elem_classes=["disclaimer"],
)
with gr.Accordion("For Chat/Translation API", open=False, visible=False):
input_text = gr.Text()
api_history = gr.Chatbot(value=[])
api_btn = gr.Button("Go", variant="primary")
out_text = gr.Text()
# api_fn args order
# input_text max_new_tokens temperature repetition_penalty top_k top_p system_prompt history
api_btn.click(
api_fn,
[
input_text,
max_new_tokens,
temperature,
repetition_penalty,
top_k,
top_p,
system_prompt,
api_history, # dont know how to pass this in gradio_client.Client calls
],
out_text,
api_name="api",
)
if __name__ == "__main__":
logger.info("Just record start time")
_ = """
ret = sp.run("lsb_release -a", capture_output=1, check=0, shell=1, encoding='utf8')
if ret.stdout:
rich.print(ret.stdout)
if ret.stderr:
rich.print("[red bold]" + ret.stdout)
ret = sp.run("nvidia-smi", capture_output=1, check=0, shell=1, encoding='utf8')
if ret.stdout:
rich.print(ret.stdout)
if ret.stderr:
rich.print("[red bold]" + ret.stdout)
raise SystemExit("Interrupt by intentioin")
# """
block.queue(max_size=8).launch(debug=True)
|