""" Run qwen 7b chat. transformers 4.31.0 import torch torch.cuda.empty_cache() """ # pylint: disable=line-too-long, invalid-name, no-member, redefined-outer-name, missing-function-docstring, missing-class-docstring, broad-except, import gc import os import time from collections import deque from dataclasses import asdict, dataclass from types import SimpleNamespace import gradio as gr import torch from loguru import logger from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation import GenerationConfig from example_list import css, example_list if not torch.cuda.is_available(): raise gr.Error("No cuda, cant continue...") os.environ["TZ"] = "Asia/Shanghai" try: time.tzset() # type: ignore # pylint: disable=no-member except Exception: # Windows logger.warning("Windows, cant run time.tzset()") model_name = "Qwen/Qwen-7B-Chat" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) n_gpus = torch.cuda.device_count() try: _ = f"{int(torch.cuda.mem_get_info()[0]/1024**3)-2}GB" except AssertionError: _ = 0 max_memory = {i: _ for i in range(n_gpus)} def gen_model(model_name: str): model = AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True, device_map="auto", load_in_4bit=True, max_memory=max_memory, fp16=True, torch_dtype=torch.float16, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) model = model.eval() model.generation_config = GenerationConfig.from_pretrained( model_name, trust_remote_code=True, ) return model def user_sub(message, chat_history): """Gen a response, clear message in user textbox.""" logger.debug(f"{message=}") # logger.remove() #to turn on trace # logger.add(sys.stderr, level="INFO") logger.trace(f"{chat_history=}") try: chat_history.append([message, ""]) except Exception: chat_history = deque([message, ""], maxlen=5) return "", chat_history def user(message, chat_history): """Gen a response.""" logger.debug(f"{message=}") logger.trace(f"{chat_history=}") try: chat_history.append([message, ""]) except Exception: chat_history = deque([message, ""], maxlen=5) return message, chat_history # for rerun in tests model = None gc.collect() torch.cuda.empty_cache() model = gen_model(model_name) def bot(chat_history, **kwargs): try: message = chat_history[-1][0] except Exception as exc: logger.error(f"{chat_history=}: {exc}") return chat_history logger.debug(f"{chat_history=}") try: _ = """ response, chat_history = model.chat( tokenizer, message, history=chat_history, temperature=0.7, repetition_penalty=1.2, # max_length=128, ) """ logger.debug("run model.chat...") response, chat_history = model.chat( tokenizer, message, chat_history[:-1], **kwargs, ) del response return chat_history except Exception as exc: logger.error(exc) chat_history[:-1].append(["message", str(exc)]) return chat_history def bot_stream(chat_history): try: message = chat_history[-1][0] except Exception as exc: logger.error(f"{chat_history=}: {exc}") raise gr.Error(f"{chat_history=}") # yield chat_history for elm in model.chat_stream(tokenizer, message, chat_history): chat_history[-1] = [message, elm] yield chat_history SYSTEM_PROMPT = "You are a helpful assistant." MAX_MAX_NEW_TOKENS = 1024 MAX_NEW_TOKENS = 128 @dataclass class Config: max_new_tokens: int = 64 repetition_penalty: float = 1.1 temperature: float = 1.0 top_k: int = 0 top_p: float = 0.9 stats_default = SimpleNamespace(llm=None, system_prompt=SYSTEM_PROMPT, config=Config()) theme = gr.themes.Soft(text_size="sm") with gr.Blocks( theme=theme, title=model_name.lower(), css=css, ) as block: stats = gr.State(stats_default) def bot_stream_state(chat_history): config = asdict(stats.value.config) return bot_stream(chat_history, **config) with gr.Accordion("🎈 Info", open=False): gr.Markdown( f"""
{model_name.lower()}
Set `repetition_penalty` to 2.1 or higher for a chatty conversation. Lower it to 1.1 or smaller if more focused anwsers are desired (for example for translations or fact-oriented queries). Smaller `top_k` probably will result in smoothies sentences. Consult `transformers` documentation for more details. Most examples are meant for another model. You probably should try to test some related prompts.""", elem_classes="xsmall", ) chatbot = gr.Chatbot(height=500, value=deque([], maxlen=5)) # type: ignore with gr.Row(): with gr.Column(scale=5): msg = gr.Textbox( label="Chat Message Box", placeholder="Ask me anything (press Shift+Enter or click Submit to send)", show_label=False, # container=False, lines=4, max_lines=30, show_copy_button=True, # ).style(container=False) ) with gr.Column(scale=1, min_width=50): with gr.Row(): submit = gr.Button("Submit", elem_classes="xsmall") stop = gr.Button("Stop", visible=True) clear = gr.Button("Clear History", visible=True) msg_submit_event = msg.submit( # fn=conversation.user_turn, fn=user_sub, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=True, show_progress="full", # api_name=None, ).then(bot_stream_state, chatbot, chatbot, queue=True) submit_click_event = submit.click( # fn=lambda x, y: ("",) + user(x, y)[1:], # clear msg fn=user, # clear msg inputs=[msg, chatbot], outputs=[msg, chatbot], queue=True, show_progress="full", # api_name=None, ).then(bot_stream_state, chatbot, chatbot, queue=True) stop.click( fn=None, inputs=None, outputs=None, cancels=[msg_submit_event, submit_click_event], queue=False, ) clear.click(lambda: None, None, chatbot, queue=False) with gr.Accordion(label="Advanced Options", open=False): system_prompt = gr.Textbox( label="System prompt", value=stats_default.system_prompt, lines=3, visible=True, ) max_new_tokens = gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=stats_default.config.max_new_tokens, ) repetition_penalty = gr.Slider( label="Repetition penalty", minimum=0.1, maximum=40.0, step=0.1, value=stats_default.config.repetition_penalty, ) temperature = gr.Slider( label="Temperature", minimum=0.1, maximum=40.0, step=0.1, value=stats_default.config.temperature, ) top_p = gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=stats_default.config.top_p, ) top_k = gr.Slider( label="Top-k", minimum=0, maximum=1000, step=1, value=stats_default.config.top_k, ) def system_prompt_fn(system_prompt): stats.value.system_prompt = system_prompt logger.debug(f"{stats.value.system_prompt=}") def max_new_tokens_fn(max_new_tokens): stats.value.config.max_new_tokens = max_new_tokens logger.debug(f"{stats.value.config.max_new_tokens=}") def repetition_penalty_fn(repetition_penalty): stats.value.config.repetition_penalty = repetition_penalty logger.debug(f"{stats.value=}") def temperature_fn(temperature): stats.value.config.temperature = temperature logger.debug(f"{stats.value=}") def top_p_fn(top_p): stats.value.config.top_p = top_p logger.debug(f"{stats.value=}") def top_k_fn(top_k): stats.value.config.top_k = top_k logger.debug(f"{stats.value=}") system_prompt.change(system_prompt_fn, system_prompt) max_new_tokens.change(max_new_tokens_fn, max_new_tokens) repetition_penalty.change(repetition_penalty_fn, repetition_penalty) temperature.change(temperature_fn, temperature) top_p.change(top_p_fn, top_p) top_k.change(top_k_fn, top_k) def reset_fn(stats_): logger.debug("reset_fn") stats_ = gr.State(stats_default) logger.debug(f"{stats_.value=}") return ( stats_, stats_default.system_prompt, stats_default.config.max_new_tokens, stats_default.config.repetition_penalty, stats_default.config.temperature, stats_default.config.top_p, stats_default.config.top_k, ) reset_btn = gr.Button("Reset") reset_btn.click( reset_fn, stats, [ stats, system_prompt, max_new_tokens, repetition_penalty, temperature, top_p, top_k, ], ) with gr.Accordion("Example inputs", open=True): etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """ examples = gr.Examples( examples=example_list, inputs=[msg], examples_per_page=60, ) with gr.Accordion("Disclaimer", open=False): _ = model_name.lower() gr.Markdown( f"Disclaimer: {_} can produce factually incorrect output, and should not be relied on to produce " f"factually accurate information. {_} was trained on various public datasets; while great efforts " "have been taken to clean the pretraining data, it is possible that this model could generate lewd, " "biased, or otherwise offensive outputs.", elem_classes=["disclaimer"], ) if __name__ == "__main__": block.queue(max_size=8).launch(debug=True)