File size: 18,105 Bytes
e84d35a
7b6ee4d
e84d35a
 
 
 
 
 
 
 
 
7b6ee4d
 
e84d35a
7b6ee4d
e84d35a
7b6ee4d
e84d35a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a15cd26
 
 
 
e84d35a
 
 
 
7b6ee4d
e84d35a
 
 
 
 
 
 
 
8a677e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a15cd26
e84d35a
 
 
 
 
 
 
 
 
a15cd26
e84d35a
 
 
 
5b95475
 
 
 
 
 
 
 
 
 
 
 
 
 
e84d35a
 
 
 
 
 
 
 
de714c1
 
 
 
e84d35a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b6ee4d
 
 
 
e84d35a
7b6ee4d
 
e84d35a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b6ee4d
 
 
 
 
 
e84d35a
 
 
 
 
 
 
 
 
 
 
 
 
7b6ee4d
 
e84d35a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b6ee4d
 
 
 
 
 
e84d35a
7b6ee4d
 
e84d35a
 
 
 
 
 
7b6ee4d
e84d35a
 
1ea52e2
 
e84d35a
 
7b6ee4d
 
 
 
e84d35a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b6ee4d
e84d35a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b6ee4d
e84d35a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b6ee4d
e84d35a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a15cd26
7b6ee4d
e84d35a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b6ee4d
a15cd26
 
 
 
 
f7bf4bf
668e2f9
69474ad
df7eee7
8a677e1
 
 
 
 
 
a15cd26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b6ee4d
a15cd26
 
e84d35a
a15cd26
d6268f4
 
 
f7bf4bf
668e2f9
8a677e1
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
"""Gradiobee."""
# pylint: disable=invalid-name, too-many-arguments, too-many-branches, too-many-locals, too-many-statements, unused-variable, too-many-return-statements, unused-import
from pathlib import Path
import platform
import inspect
from itertools import zip_longest

# import tempfile

from sklearn.cluster import DBSCAN
from fastlid import fastlid
from logzero import logger
from icecream import ic

import numpy as np  # noqa
import pandas as pd
import matplotlib  # noqa
import matplotlib.pyplot as plt
import seaborn as sns

# from radiobee.process_upload import process_upload
from radiobee.files2df import files2df
from radiobee.file2text import file2text
from radiobee.lists2cmat import lists2cmat
from radiobee.gen_pset import gen_pset
from radiobee.gen_aset import gen_aset
from radiobee.align_texts import align_texts
from radiobee.cmat2tset import cmat2tset
from radiobee.trim_df import trim_df
from radiobee.error_msg import error_msg
from radiobee.text2lists import text2lists

from radiobee.align_sents import align_sents
from radiobee.shuffle_sents import shuffle_sents  # type: ignore
from radiobee.paras2sents import paras2sents  # type: ignore

uname = platform.uname()
HFSPACES = False
if "amzn2" in uname.release:  # on hf spaces
    HFSPACES = True

sns.set()
sns.set_style("darkgrid")
pd.options.display.float_format = "{:,.2f}".format

debug = False
debug = True


def style0(df):
    _ = df.style.set_properties(
            **{
                "font-size": "8pt",
                "border-color": "green",
                # "border": ".11px black solid !important",
                'width': '1500px'
            }
            # border-color="black",
        ).set_table_styles([{
            "selector": "",  # noqs
            "props": [("border", ".05px black solid !important")]}]  # noqs
        ).format(
            precision=2
        )
    return _.to_html()


def style1(df):
    _ = df.style.set_properties(
            **{
                "font-size": "10pt",
                "border-color": "green",
                "border": "1px black solid !important",
                'width': '1900px'
            }
            # border-color="black",
        ).set_table_styles([{
            "selector": "",  # noqs
            "props": [("border", "1.2px black solid !important")]}]  # noqs
        ).format(
            precision=2
        )
    return _.to_html()


def gradiobee(  # noqa
    file1,
    file2,
    tf_type,
    idf_type,
    dl_type,
    norm,
    eps,
    min_samples,
    # debug=False,
    sent_ali_algo,
):
    """Process inputs and return outputs."""
    logger.debug(" *debug* ")

    inputs = [file1,
        file2,
        tf_type,
        idf_type,
        dl_type,
        norm,
        eps,
        min_samples,
        # debug=False,
        sent_ali_algo,
    ]
    ic(inputs)
    ic(*map(type, inputs))

    # possible further switchse
    # para_sent: para/sent
    # sent_ali: default/radio/gale-church
    plot_dia = True  # noqa

    # outputs: check return
    # if outputs is modified, also need to modify error_msg's outputs

    if not (file1 or file2):
        msg = "Nothing to do..."
        return error_msg(msg)

    # convert "None" to None for those Radio types
    for _ in [idf_type, dl_type, norm]:
        if _ in "None":
            _ = None

    # logger.info("file1: *%s*, file2: *%s*", file1, file2)
    if file2 is not None:
        logger.info("file1.name: *%s*, file2.name: *%s*", file1.name, file2.name)
    else:
        logger.info("file1.name: *%s*, file2: *%s*", file1.name, file2)

    # bypass if file1 or file2 is str input
    # if not (isinstance(file1, str) or isinstance(file2, str)):
    text1 = file2text(file1)

    if file2 is None:
        logger.debug("file2 is None")
        text2 = ""
    else:
        logger.debug("file2.name: %s", file2.name)
        text2 = file2text(file2)

    # if not text1.strip() or not text2.strip():
    if not text1.strip():
        msg = (
            "file 1 is apparently empty... Upload a none empty file and try again."
            # f"text1[:10]: [{text1[:10]}], "
            # f"text2[:10]: [{text2[:10]}]"
        )
        return error_msg(msg)

    # single file
    # when text2 is empty
    # process file1/text1: split text1 to text1 text2 to zh-en

    len_max = 2000
    if not text2.strip():  # empty file2
        _ = [elm.strip() for elm in text1.splitlines() if elm.strip()]
        if not _:  # essentially empty file1
            return error_msg("Nothing worthy of processing in file 1")

        logger.info(
            "single file: len %s, max %s",
            len(_), 2 * len_max
        )
        # exit if there are too many lines
        if len(_) > 2 * len_max:
            return error_msg(f" Too many lines ({len(_)}) > {2 * len_max}, alignment op halted, sorry.", "info")

        _ = zip_longest(_, [""])
        _ = pd.DataFrame(_, columns=["text1", "text2"])
        df_trimmed = trim_df(_)

        # text1 = loadtext("data/test-dual.txt")
        list1, list2 = text2lists(text1)

        lang1 = text2lists.lang1
        lang2 = text2lists.lang2
        offset = text2lists.offset  # noqa

        _ = """
        ax = sns.heatmap(lists2cmat(list1, list2), cmap="gist_earth_r")  # ax=plt.gca()
        ax.invert_yaxis()
        ax.set(
            xlabel=lang1,
            ylabel=lang2,
            title=f"cos similary heatmap \n(offset={offset})",
        )
        plt_loc = "img/plt.png"
        plt.savefig(plt_loc)
        # """

        # output_plot = plt_loc  # for gr.outputs.Image

        #
        _ = zip_longest(list1, list2, fillvalue="")
        df_aligned = pd.DataFrame(
            _,
            columns=["text1", "tex2"]
        )

        file_dl = Path(f"{Path(file1.name).stem[:-8]}-{lang1}-{lang2}.csv")
        file_dl_xlsx = Path(
            f"{Path(file1.name).stem[:-8]}-{lang1}-{lang2}.xlsx"
        )

        # return  df_trimmed, output_plot, file_dl, file_dl_xlsx, df_aligned

    # end if single file
    # not single file
    else:  # file1 file 2: proceed
        fastlid.set_languages = None
        lang1, _ = fastlid(text1)
        lang2, _ = fastlid(text2)

        df1 = files2df(file1, file2)

        list1 = [elm for elm in df1.text1 if elm]
        list2 = [elm for elm in df1.text2 if elm]
        # len1 = len(list1)  # noqa
        # len2 = len(list2)  # noqa

        # exit if there are too many lines
        len12 = len(list1) + len(list2)
        logger.info(
            "fast track: len1 %s, len2 %s, tot %s, max %s",
            len(list1), len(list2), len(list1) + len(list2), 3 * len_max
        )
        if len12 > 3 * len_max:
            return error_msg(f" Too many lines ({len(list1)} + {len(list2)} > {3 * len_max}), alignment op halted, sorry.", "info")

        file_dl = Path(f"{Path(file1.name).stem[:-8]}-{Path(file2.name).stem[:-8]}.csv")
        file_dl_xlsx = Path(
            f"{Path(file1.name).stem[:-8]}-{Path(file2.name).stem[:-8]}.xlsx"
        )

        df_trimmed = trim_df(df1)
    # --- end else single

    lang_en_zh = ["en", "zh"]

    logger.debug("lang1: %s, lang2: %s", lang1, lang2)
    if debug:
        ic(f" lang1: {lang1}, lang2: {lang2}")
        ic("fast track? ", lang1 in lang_en_zh and lang2 in lang_en_zh)

    # fast track
    if lang1 in lang_en_zh and lang2 in lang_en_zh:
        try:
            cmat = lists2cmat(
                list1,
                list2,
                tf_type=tf_type,
                idf_type=idf_type,
                dl_type=dl_type,
                norm=norm,
            )
        except Exception as exc:
            logger.error(exc)
            return error_msg(exc)
    # slow track
    else:
        logger.info(
            "slow track: len1 %s, len2 %s, tot: %s, max %s",
            len(list1), len(list2), len(list1) + len(list2),
            3 * len_max
        )
        if len(list1) + len(list2) > 3 * len_max:
            msg = (
                f" len1 {len(list1)} + len2 {len(list2)} > {3 * len_max}. "
                "This will take too long to complete "
                "and will hog this experimental server and hinder "
                "other users from trying the service. "
                "Aborted...sorry"
            )
            return error_msg(msg, "info ")
        try:
            from radiobee.model_s import model_s  # pylint: disable=import-outside-toplevel
            vec1 = model_s.encode(list1)
            vec2 = model_s.encode(list2)
            # cmat = vec1.dot(vec2.T)
            cmat = vec2.dot(vec1.T)
        except Exception as exc:
            logger.error(exc)
            _ = inspect.currentframe().f_lineno  # type: ignore
            return error_msg(
                f"{exc}, {Path(__file__).name} ln{_}, period"
            )

    tset = pd.DataFrame(cmat2tset(cmat))
    tset.columns = ["x", "y", "cos"]

    _ = """
    df_trimmed = pd.concat(
        [
            df1.iloc[:4, :],
            pd.DataFrame(
                [
                    [
                        "...",
                        "...",
                    ]
                ],
                columns=df1.columns,
            ),
            df1.iloc[-4:, :],
        ],
        ignore_index=1,
    )
    # """

    # process list1, list2 to obtained df_aligned
    # quick fix ValueError: not enough values to unpack (expected at least 1, got 0)
    # fixed in gen_pet, but we leave the loop here
    for min_s in range(min_samples):
        logger.info(" min_samples, using %s", min_samples - min_s)
        try:
            pset = gen_pset(
                cmat,
                eps=eps,
                min_samples=min_samples - min_s,
                delta=7,
            )
            break
        except ValueError:
            logger.info(" decrease min_samples by %s", min_s + 1)
            continue
        except Exception as e:
            logger.error(e)
            continue
    else:
        # break should happen above when min_samples = 2
        raise Exception("bummer, this shouldn't happen, probably another bug")

    min_samples = gen_pset.min_samples

    # will result in error message:
    # UserWarning: Starting a Matplotlib GUI outside of
    # the main thread will likely fail."
    _ = """
    plot_cmat(
        cmat,
        eps=eps,
        min_samples=min_samples,
        xlabel=lang1,
        ylabel=lang2,
    )
    # """

    # move plot_cmat's code to the main thread here
    # to make it work
    xlabel = lang1
    ylabel = lang2

    len1, len2 = cmat.shape
    ylim, xlim = len1, len2

    # does not seem to show up
    ic(f" len1 (ylim): {len1}, len2 (xlim): {len2}")
    logger.debug(" len1 (ylim): %s, len2 (xlim): %s", len1, len2)
    if debug:
        print(f" len1 (ylim): {len1}, len2 (xlim): {len2}")

    df_ = pd.DataFrame(cmat2tset(cmat))
    df_.columns = ["x", "y", "cos"]

    sns.set()
    sns.set_style("darkgrid")

    # close all existing figures, necesssary for hf spaces
    plt.close("all")

    # if sys.platform not in ["win32", "linux"]:
    # going for noninterative
    # to cater for Mac, thanks to WhiteFox
    plt.switch_backend("Agg")

    # figsize=(13, 8), (339, 212) mm on '1280x800+0+0'
    fig = plt.figure(figsize=(13, 8))

    # gs = fig.add_gridspec(2, 2, wspace=0.4, hspace=0.58)
    gs = fig.add_gridspec(1, 2, wspace=0.4, hspace=0.58)
    ax_heatmap = fig.add_subplot(gs[0, 0])  # ax2
    ax0 = fig.add_subplot(gs[0, 1])
    # ax1 = fig.add_subplot(gs[1, 0])

    cmap = "viridis_r"
    sns.heatmap(cmat, cmap=cmap, ax=ax_heatmap).invert_yaxis()
    ax_heatmap.set_xlabel(xlabel)
    ax_heatmap.set_ylabel(ylabel)
    ax_heatmap.set_title("cos similarity heatmap")

    fig.suptitle(f"alignment projection\n(eps={eps}, min_samples={min_samples})")

    _ = DBSCAN(min_samples=min_samples, eps=eps).fit(df_).labels_ > -1

    # _x = DBSCAN(min_samples=min_samples, eps=eps).fit(df_).labels_ < 0
    _x = ~_

    # max cos along columns
    df_.plot.scatter("x", "y", c="cos", cmap=cmap, ax=ax0)

    # outliers
    df_[_x].plot.scatter("x", "y", c="r", marker="x", alpha=0.6, ax=ax0)
    ax0.set_xlabel(xlabel)
    ax0.set_ylabel(ylabel)
    ax0.set_xlim(xmin=0, xmax=xlim)
    ax0.set_ylim(ymin=0, ymax=ylim)
    ax0.set_title(
        "max along columns (x: outliers)\n"
        "potential aligned pairs (green line), "
        f"{round(sum(_) / xlim, 2):.0%}"
    )

    plt_loc = "img/plt.png"
    ic(f" plotting to {plt_loc}")
    plt.savefig(plt_loc)

    # clustered
    # df_[_].plot.scatter("x", "y", c="cos", cmap=cmap, ax=ax1)
    # ax1.set_xlabel(xlabel)
    # ax1.set_ylabel(ylabel)
    # ax1.set_xlim(0, len1)
    # ax1.set_title(f"potential aligned pairs ({round(sum(_) / len1, 2):.0%})")
    # end of plot_cmat

    src_len, tgt_len = cmat.shape
    aset = gen_aset(pset, src_len, tgt_len)
    final_list = align_texts(aset, list2, list1)  # note the order

    # df_aligned
    df_aligned = pd.DataFrame(final_list, columns=["text1", "text2", "likelihood"])

    # swap text1 text2
    df_aligned = df_aligned[["text2", "text1", "likelihood"]]
    df_aligned.columns = ["text1", "text2", "likelihood"]

    ic("paras aligned: ", df_aligned.head(10))

    # round the last column to 2
    # df_aligned.likelihood = df_aligned.likelihood.round(2)
    # df_aligned = df_aligned.round({"likelihood": 2})

    # df_aligned.likelihood = df_aligned.likelihood.apply(lambda x: np.nan if x in [""] else x)

    if len(df_aligned) > 200:
        df_html = None
    else:  # show a one-bathc table in html
        # style
        styled = df_aligned.style.set_properties(
            **{
                "font-size": "10pt",
                "border-color": "black",
                "border": "1px black solid !important"
            }
            # border-color="black",
        ).set_table_styles([{
            "selector": "",  # noqs
            "props": [("border", "2px black solid !important")]}]  # noqs
        ).format(
            precision=2
        )
        # .bar(subset="likelihood", color="#5fba7d")

        # .background_gradient("Greys")

        # df_html = df_aligned.to_html()
        df_html = styled.to_html()

    # ===
    if plot_dia:
        output_plot = "img/plt.png"
    else:
        output_plot = None

    _ = df_aligned.to_csv(index=False)
    file_dl.write_text(_, encoding="utf8")

    # file_dl.write_text(_, encoding="gb2312")  # no go
    df_aligned.to_excel(file_dl_xlsx)

    # return df_trimmed, plt

    # return df_trimmed, plt, file_dl, file_dl_xlsx, df_aligned

    # output_plot: gr.outputs.Image(type="auto", label="...")
    # return df_trimmed, output_plot, file_dl, file_dl_xlsx, df_aligned
    # return df_trimmed, output_plot, file_dl, file_dl_xlsx, styled, df_html  # gradio cant handle style

    ic("sent-ali-algo: ", sent_ali_algo)

    # ### sent-ali-algo is None: para align
    if sent_ali_algo in ["None"]:
        ic("returning para-ali outputs")
        # return df_trimmed, output_plot, file_dl, file_dl_xlsx, None, None, df_aligned, df_html
        # return df_trimmed, file_dl, file_dl_xlsx, None, None, df_aligned, df_html
        # return df_trimmed, file_dl, file_dl_xlsx, None, None, df_aligned, None
        # return df_trimmed, file_dl, file_dl_xlsx, None, None, None, None

        to_be_alinged = style0(df_trimmed)
        done_alinged = style1(trim_df(df_aligned, 40))

        # modi#
        return to_be_alinged, file_dl, file_dl_xlsx, None, None, done_alinged, output_plot

    # ### proceed with sent align
    if sent_ali_algo in ["fast"]:
        ic(sent_ali_algo)
        align_func = align_sents

        ic(df_aligned.shape, df_aligned.columns)

        aligned_sents = paras2sents(df_aligned, align_func)

        # ic(pd.DataFrame(aligned_sents).shape, aligned_sents)
        ic(pd.DataFrame(aligned_sents).shape)

        df_aligned_sents = pd.DataFrame(aligned_sents, columns=["text1", "text2"])
    else:  # ["slow"]
        ic(sent_ali_algo)
        align_func = shuffle_sents
        aligned_sents = paras2sents(df_aligned, align_func, lang1, lang2)

        # add extra entry if necessary
        aligned_sents = [list(sent) + [""] if len(sent) == 2 else list(sent) for sent in aligned_sents]

        df_aligned_sents = pd.DataFrame(aligned_sents, columns=["text1", "text2", "likelihood"])

    # prepare sents downloads
    file_dl_sents = Path(f"{file_dl.stem}-sents{file_dl.suffix}")
    file_dl_xlsx_sents = Path(f"{file_dl_xlsx.stem}-sents{file_dl_xlsx.suffix}")
    _ = df_aligned_sents.to_csv(index=False)
    file_dl_sents.write_text(_, encoding="utf8")

    df_aligned_sents.to_excel(file_dl_xlsx_sents)

    # prepare html output
    if len(df_aligned_sents) > 200:
        df_html = None
    else:  # show a one-bathc table in html
        # style
        styled = df_aligned_sents.style.set_properties(
            **{
                "font-size": "10pt",
                "border-color": "black",
                "border": "1px black solid !important"
            }
            # border-color="black",
        ).set_table_styles([{
            "selector": "",  # noqs
            "props": [("border", "2px black solid !important")]}]  # noqs
        ).format(
            precision=2
        )
        df_html = styled.to_html()

    # aligned sents outputs
    ic("aligned sents outputs")

    # return df_trimmed, output_plot, file_dl, file_dl_xlsx, None, None, df_aligned, df_html

    # return df_trimmed, output_plot, file_dl, file_dl_xlsx, file_dl_sents, file_dl_xlsx_sents, df_aligned_sents, df_html

    # remove output_plot, need to modify all return and error_msg.error_msg
    # return df_trimmed, file_dl, file_dl_xlsx, file_dl_sents, file_dl_xlsx_sents, df_aligned_sents, df_html


    to_be_alinged = style0(df_trimmed)
    done_alinged = style1(trim_df(df_aligned_sents, 40))

    ic(" checkpoint ")

    # modi#
    # return to_be_alinged, file_dl, file_dl_xlsx, file_dl_sents, file_dl_xlsx_sents, df_aligned_sents
    return to_be_alinged, file_dl, file_dl_xlsx, file_dl_sents, file_dl_xlsx_sents, done_alinged, output_plot