Spaces:
Build error
Build error
File size: 1,484 Bytes
3e423a0 67a91aa 3e423a0 5540630 3e423a0 5540630 67a91aa 5540630 3e423a0 5540630 3e423a0 5540630 3e423a0 5540630 3e423a0 5540630 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import pipeline
# Define the respond function
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# Define the initial message for the chat
messages = [
{"role": "user", "content": message},
]
# Create a pipeline for text generation
pipe = pipeline("text-generation", model="codefuse-ai/CodeFuse-DeepSeek-33B")
pipe(messages)
response = ""
# Use the InferenceClient to get responses
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
# Setup Gradio interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
# Launch the Gradio app
if __name__ == "__main__":
demo.launch() |