File size: 3,043 Bytes
449cbf5
 
 
 
 
 
 
 
 
 
 
 
 
 
ab2d07e
 
 
 
 
 
 
 
449cbf5
 
ab2d07e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
449cbf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab2d07e
449cbf5
ab2d07e
 
449cbf5
 
ab2d07e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import argparse
import os
from dotenv import load_dotenv

from langchain.globals import set_debug
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser

from lib.repository import download_github_repo
from lib.loader import load_files
from lib.chain import create_retriever, create_qa_chain
from lib.utils import read_prompt, load_LLM, select_model
from lib.models import MODELS_MAP

import time
import gradio as gr

def slow_echo(message, history):
    for i in range(len(message)):
        time.sleep(0.05)
        yield message[: i + 1]

# set_debug(True)

def build():
    with gr.Blocks() as demo:
        repo_url = gr.Textbox(label="Repo URL", placeholder="Enter the repository URL here...")
        submit_btn = gr.Button("Submit Repo URL")

        user_input = gr.Textbox(label="User Input", placeholder="Enter your question here...")
        chat_output = gr.Textbox(label="Chat Output", placeholder="The answer will appear here...")
        # add a status textbox

        def update_repo_url(new_url):
            updated_url = main(new_url)
            return updated_url

        def generate_answer(user_input):
            answer = qa_chain.invoke(user_input)
            print(f"Answer: {answer}")
            return answer['output']

        submit_btn.click(update_repo_url, inputs=repo_url, outputs=repo_url)
        user_input_submit_btn = gr.Button("Submit Question")
        user_input_submit_btn.click(generate_answer, inputs=user_input, outputs=chat_output)

    demo.launch()

def main(repo_url):
    # Prompt user to select the model
    model_name = select_model()
    model_info = MODELS_MAP[model_name]
    repo_name = repo_url.split("/")[-1].replace(".git", "")

    # Compute the path to the data folder relative to the script's directory
    base_dir = os.path.dirname(os.path.abspath(__file__))
    repo_dir = os.path.join(base_dir, "data", repo_name)
    db_dir = os.path.join(base_dir, "data", "db")
    prompt_templates_dir = os.path.join(base_dir, "prompt_templates")

    # Download the GitHub repository
    print(f"Downloading repository from {repo_url}...")
    download_github_repo(repo_url, repo_dir)

    # Load prompt templates
    prompts_text = {
        "initial_prompt": read_prompt(os.path.join(prompt_templates_dir, 'initial_prompt.txt')),
        "evaluation_prompt": read_prompt(os.path.join(prompt_templates_dir, 'evaluation_prompt.txt')),
    }

    # Load documents from the repository
    print(f"Loading documents from {repo_dir}...")
    document_chunks = load_files(repository_path=repo_dir)
    print(f"Created chunks length is: {len(document_chunks)}")

    # Create model, retriever
    print(f"Creating retrieval QA chain using {model_name}...")
    llm = load_LLM(model_name)
    retriever = create_retriever(model_name, db_dir, document_chunks)
    global qa_chain
    qa_chain = create_qa_chain(llm, retriever, prompts_text)
    print(f"Ready to chat!")
    return repo_url

if __name__ == "__main__":
    build()