File size: 2,424 Bytes
bd81242
1cd7e2c
bd81242
88c3112
 
 
1cd7e2c
15b44ba
61b9df0
1cd7e2c
 
1e53245
b92287c
 
 
 
74a4765
1609134
 
9222bcf
 
 
1609134
1cd7e2c
 
9222bcf
 
 
 
 
 
7f3e695
 
 
 
 
 
 
1609134
7f3e695
 
7b994e6
7f3e695
 
 
 
dfa75b2
7f3e695
593deb8
7f3e695
bae56f1
 
 
 
 
 
 
7f3e695
318ea3e
de6d38a
 
 
318ea3e
7f3e695
de6d38a
bae56f1
7f3e695
 
bae56f1
7f3e695
 
37e5f7e
bd81242
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# file stuff
import os
from io import BytesIO

#image generation stuff
from PIL import Image

# gradio / hf / image gen stuff
import gradio as gr
from dotenv import load_dotenv


from google.cloud import aiplatform
import vertexai
from vertexai.preview.vision_models import ImageGenerationModel
from vertexai import preview

# GCP credentials stuff
import json
import pybase64
from google.oauth2 import service_account
import google.auth

load_dotenv()

service_account_json = pybase64.b64decode(os.getenv("IMAGEN"))
service_account_info = json.loads(service_account_json)
credentials = service_account.Credentials.from_service_account_info(service_account_info)
project="pdr-imagen"
aiplatform.init(project=project, credentials=credentials)

def generate_image(prompt,model_name):
    try:
        model = ImageGenerationModel.from_pretrained(model_name)
        response = model.generate_images(
            prompt=prompt,
            number_of_images=1,
        )

        image_bytes = response[0]._image_bytes
        image_url = Image.open(BytesIO(image_bytes))

    except Exception as e:
        print(e)
        raise gr.Error(f"An error occurred while generating the image for: {entry}")
    return image_url

with gr.Blocks() as demo:

    gr.Markdown("# <center>Google Vertex Imagen Generator</center>")

    #instructions
    with gr.Accordion("Instructions & Tips",label="instructions",open=False):
        with gr.Row():
            gr.Markdown("**Tips**: Use adjectives (size,color,mood), specify the visual style (realistic,cartoon,8-bit), explain the point of view (from above,first person,wide angle) ")

    #prompts
    with gr.Accordion("Prompt",label="Prompt",open=True):
        text = gr.Textbox(label="What do you want to create?", placeholder="Enter your text and then click on the \"Image Generate\" button")

    model = gr.Dropdown(choices=["imagegeneration@002", "imagegeneration@005"], label="Model", value="imagegeneration@005")

    with gr.Row():
        btn = gr.Button("Generate Images")

    #output
    with gr.Accordion("Image Output",label="Image Output",open=True):
        output_image = gr.Image(label="Image")

    btn.click(fn=generate_image, inputs=[text, model ], outputs=output_image, api_name=False)
    text.submit(fn=generate_image, inputs=[text, model ], outputs=output_image, api_name="generate_image") # Generate an api endpoint in Gradio / HF

demo.launch(share=False)