Spaces:
Sleeping
Sleeping
Delete PennwickFileAnalyzer.py
Browse files- PennwickFileAnalyzer.py +0 -168
PennwickFileAnalyzer.py
DELETED
@@ -1,168 +0,0 @@
|
|
1 |
-
##############################################################
|
2 |
-
# PDF Chat
|
3 |
-
#
|
4 |
-
# Mike Pastor February 2024
|
5 |
-
|
6 |
-
|
7 |
-
import streamlit as st
|
8 |
-
from dotenv import load_dotenv
|
9 |
-
|
10 |
-
from PyPDF2 import PdfReader
|
11 |
-
from langchain.text_splitter import CharacterTextSplitter
|
12 |
-
|
13 |
-
from InstructorEmbedding import INSTRUCTOR
|
14 |
-
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
|
15 |
-
from langchain.vectorstores import FAISS
|
16 |
-
from langchain.chat_models import ChatOpenAI
|
17 |
-
from langchain.memory import ConversationBufferMemory
|
18 |
-
from langchain.chains import ConversationalRetrievalChain
|
19 |
-
from htmlTemplates import css, bot_template, user_template
|
20 |
-
from langchain.llms import HuggingFaceHub
|
21 |
-
|
22 |
-
def get_pdf_text(pdf_docs):
|
23 |
-
text = ""
|
24 |
-
for pdf in pdf_docs:
|
25 |
-
pdf_reader = PdfReader(pdf)
|
26 |
-
for page in pdf_reader.pages:
|
27 |
-
text += page.extract_text()
|
28 |
-
return text
|
29 |
-
|
30 |
-
# Chunk size and overlap must not exceed the models capacity!
|
31 |
-
#
|
32 |
-
def get_text_chunks(text):
|
33 |
-
text_splitter = CharacterTextSplitter(
|
34 |
-
separator="\n",
|
35 |
-
chunk_size=800, # 1000
|
36 |
-
chunk_overlap=200,
|
37 |
-
length_function=len
|
38 |
-
)
|
39 |
-
chunks = text_splitter.split_text(text)
|
40 |
-
return chunks
|
41 |
-
|
42 |
-
|
43 |
-
def get_vectorstore(text_chunks):
|
44 |
-
# embeddings = OpenAIEmbeddings()
|
45 |
-
|
46 |
-
# pip install InstructorEmbedding
|
47 |
-
# pip install sentence-transformers==2.2.2
|
48 |
-
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
|
49 |
-
|
50 |
-
# from InstructorEmbedding import INSTRUCTOR
|
51 |
-
# model = INSTRUCTOR('hkunlp/instructor-xl')
|
52 |
-
# sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments"
|
53 |
-
# instruction = "Represent the Science title:"
|
54 |
-
# embeddings = model.encode([[instruction, sentence]])
|
55 |
-
|
56 |
-
# embeddings = model.encode(text_chunks)
|
57 |
-
print('have Embeddings: ')
|
58 |
-
|
59 |
-
# text_chunks="this is a test"
|
60 |
-
# FAISS, Chroma and other vector databases
|
61 |
-
#
|
62 |
-
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
63 |
-
print('FAISS succeeds: ')
|
64 |
-
|
65 |
-
return vectorstore
|
66 |
-
|
67 |
-
def get_conversation_chain(vectorstore):
|
68 |
-
# llm = ChatOpenAI()
|
69 |
-
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
|
70 |
-
# google/bigbird-roberta-base facebook/bart-large
|
71 |
-
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature": 0.5, "max_length": 512})
|
72 |
-
|
73 |
-
memory = ConversationBufferMemory(
|
74 |
-
memory_key='chat_history', return_messages=True)
|
75 |
-
conversation_chain = ConversationalRetrievalChain.from_llm(
|
76 |
-
llm=llm,
|
77 |
-
retriever=vectorstore.as_retriever(),
|
78 |
-
memory=memory,
|
79 |
-
)
|
80 |
-
return conversation_chain
|
81 |
-
|
82 |
-
def handle_userinput(user_question):
|
83 |
-
|
84 |
-
response = st.session_state.conversation({'question': user_question})
|
85 |
-
# response = st.session_state.conversation({'summarization': user_question})
|
86 |
-
st.session_state.chat_history = response['chat_history']
|
87 |
-
|
88 |
-
|
89 |
-
# st.empty()
|
90 |
-
|
91 |
-
for i, message in enumerate(st.session_state.chat_history):
|
92 |
-
if i % 2 == 0:
|
93 |
-
st.write(user_template.replace(
|
94 |
-
"{{MSG}}", message.content), unsafe_allow_html=True)
|
95 |
-
|
96 |
-
else:
|
97 |
-
st.write(bot_template.replace(
|
98 |
-
"{{MSG}}", message.content), unsafe_allow_html=True)
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
def main():
|
104 |
-
|
105 |
-
load_dotenv()
|
106 |
-
st.set_page_config(page_title="MLP Chat with multiple PDFs",
|
107 |
-
page_icon=":books:")
|
108 |
-
|
109 |
-
st.write(css, unsafe_allow_html=True)
|
110 |
-
|
111 |
-
if "conversation" not in st.session_state:
|
112 |
-
st.session_state.conversation = None
|
113 |
-
if "chat_history" not in st.session_state:
|
114 |
-
st.session_state.chat_history = None
|
115 |
-
|
116 |
-
st.header("Mike's PDF Chat :books:")
|
117 |
-
|
118 |
-
user_question = st.text_input("Ask a question about your documents:")
|
119 |
-
if user_question:
|
120 |
-
handle_userinput(user_question)
|
121 |
-
|
122 |
-
# st.write( user_template, unsafe_allow_html=True)
|
123 |
-
# st.write(user_template.replace( "{{MSG}}", "Hello robot!"), unsafe_allow_html=True)
|
124 |
-
# st.write(bot_template.replace( "{{MSG}}", "Hello human!"), unsafe_allow_html=True)
|
125 |
-
|
126 |
-
|
127 |
-
with st.sidebar:
|
128 |
-
|
129 |
-
st.subheader("Your documents")
|
130 |
-
pdf_docs = st.file_uploader(
|
131 |
-
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
|
132 |
-
|
133 |
-
# Upon button press
|
134 |
-
if st.button("Process these files"):
|
135 |
-
with st.spinner("Processing..."):
|
136 |
-
|
137 |
-
#################################################################
|
138 |
-
# Track the overall time for file processing into Vectors
|
139 |
-
# #
|
140 |
-
from datetime import datetime
|
141 |
-
global_now = datetime.now()
|
142 |
-
global_current_time = global_now.strftime("%H:%M:%S")
|
143 |
-
st.write("Vectorizing Files - Current Time =", global_current_time)
|
144 |
-
|
145 |
-
# get pdf text
|
146 |
-
raw_text = get_pdf_text(pdf_docs)
|
147 |
-
# st.write(raw_text)
|
148 |
-
|
149 |
-
# # get the text chunks
|
150 |
-
text_chunks = get_text_chunks(raw_text)
|
151 |
-
# st.write(text_chunks)
|
152 |
-
|
153 |
-
# # create vector store
|
154 |
-
vectorstore = get_vectorstore(text_chunks)
|
155 |
-
|
156 |
-
# # create conversation chain
|
157 |
-
st.session_state.conversation = get_conversation_chain(vectorstore)
|
158 |
-
|
159 |
-
# Mission Complete!
|
160 |
-
global_later = datetime.now()
|
161 |
-
st.write("Files Vectorized - Total EXECUTION Time =",
|
162 |
-
(global_later - global_now), global_later)
|
163 |
-
|
164 |
-
|
165 |
-
if __name__ == '__main__':
|
166 |
-
main()
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|