Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,93 @@
|
|
7 |
import streamlit as st
|
8 |
from dotenv import load_dotenv
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
from htmlTemplates import css, bot_template, user_template
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
|
13 |
|
|
|
7 |
import streamlit as st
|
8 |
from dotenv import load_dotenv
|
9 |
|
10 |
+
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
|
11 |
+
from langchain.vectorstores import FAISS
|
12 |
+
from langchain.chat_models import ChatOpenAI
|
13 |
+
from langchain.memory import ConversationBufferMemory
|
14 |
+
from langchain.chains import ConversationalRetrievalChain
|
15 |
from htmlTemplates import css, bot_template, user_template
|
16 |
+
from langchain.llms import HuggingFaceHub
|
17 |
+
|
18 |
+
|
19 |
+
def get_pdf_text(pdf_docs):
|
20 |
+
text = ""
|
21 |
+
for pdf in pdf_docs:
|
22 |
+
pdf_reader = PdfReader(pdf)
|
23 |
+
for page in pdf_reader.pages:
|
24 |
+
text += page.extract_text()
|
25 |
+
return text
|
26 |
+
|
27 |
+
# Chunk size and overlap must not exceed the models capacity!
|
28 |
+
#
|
29 |
+
def get_text_chunks(text):
|
30 |
+
text_splitter = CharacterTextSplitter(
|
31 |
+
separator="\n",
|
32 |
+
chunk_size=800, # 1000
|
33 |
+
chunk_overlap=200,
|
34 |
+
length_function=len
|
35 |
+
)
|
36 |
+
chunks = text_splitter.split_text(text)
|
37 |
+
return chunks
|
38 |
+
|
39 |
+
|
40 |
+
def get_vectorstore(text_chunks):
|
41 |
+
# embeddings = OpenAIEmbeddings()
|
42 |
+
|
43 |
+
# pip install InstructorEmbedding
|
44 |
+
# pip install sentence-transformers==2.2.2
|
45 |
+
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
|
46 |
+
|
47 |
+
# from InstructorEmbedding import INSTRUCTOR
|
48 |
+
# model = INSTRUCTOR('hkunlp/instructor-xl')
|
49 |
+
# sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments"
|
50 |
+
# instruction = "Represent the Science title:"
|
51 |
+
# embeddings = model.encode([[instruction, sentence]])
|
52 |
+
|
53 |
+
# embeddings = model.encode(text_chunks)
|
54 |
+
print('have Embeddings: ')
|
55 |
+
|
56 |
+
# text_chunks="this is a test"
|
57 |
+
# FAISS, Chroma and other vector databases
|
58 |
+
#
|
59 |
+
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
60 |
+
print('FAISS succeeds: ')
|
61 |
+
|
62 |
+
return vectorstore
|
63 |
+
|
64 |
+
def get_conversation_chain(vectorstore):
|
65 |
+
# llm = ChatOpenAI()
|
66 |
+
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
|
67 |
+
# google/bigbird-roberta-base facebook/bart-large
|
68 |
+
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature": 0.5, "max_length": 512})
|
69 |
+
|
70 |
+
memory = ConversationBufferMemory(
|
71 |
+
memory_key='chat_history', return_messages=True)
|
72 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
73 |
+
llm=llm,
|
74 |
+
retriever=vectorstore.as_retriever(),
|
75 |
+
memory=memory,
|
76 |
+
)
|
77 |
+
return conversation_chain
|
78 |
+
|
79 |
+
def handle_userinput(user_question):
|
80 |
+
|
81 |
+
response = st.session_state.conversation({'question': user_question})
|
82 |
+
# response = st.session_state.conversation({'summarization': user_question})
|
83 |
+
st.session_state.chat_history = response['chat_history']
|
84 |
+
|
85 |
+
|
86 |
+
# st.empty()
|
87 |
+
|
88 |
+
for i, message in enumerate(st.session_state.chat_history):
|
89 |
+
if i % 2 == 0:
|
90 |
+
st.write(user_template.replace(
|
91 |
+
"{{MSG}}", message.content), unsafe_allow_html=True)
|
92 |
+
|
93 |
+
else:
|
94 |
+
st.write(bot_template.replace(
|
95 |
+
"{{MSG}}", message.content), unsafe_allow_html=True)
|
96 |
+
|
97 |
|
98 |
|
99 |
|