Spaces:
Sleeping
Sleeping
File size: 6,806 Bytes
01fc03c 25ba25f 01fc03c 25ba25f ecc91c5 01fc03c 176fa1e 01fc03c 4cc5efa 01fc03c 176fa1e 01fc03c b2e2d25 176fa1e b2e2d25 176fa1e 01fc03c 176fa1e 01fc03c a85e59b 01fc03c 176fa1e 01fc03c 176fa1e 01fc03c b2e2d25 01fc03c 1b5f1f5 01fc03c ecc91c5 01fc03c 176fa1e 01fc03c 176fa1e 01fc03c 176fa1e 01fc03c 176fa1e 01fc03c 176fa1e 01fc03c 176fa1e 01fc03c 176fa1e 01fc03c 176fa1e 01fc03c 176fa1e 01fc03c 176fa1e 01fc03c 176fa1e 01fc03c 176fa1e 01fc03c 176fa1e 01fc03c 176fa1e 01fc03c 176fa1e 01fc03c 176fa1e 01fc03c 1b5f1f5 01fc03c 176fa1e 01fc03c 1b5f1f5 01fc03c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
##########################################################################
# app.py - Pennwick Honeybee Robot
#
# HuggingFace Spaces application to provide honeybee expertise
# with open-source models
#
# Mike Pastor February 23, 2024
import streamlit as st
from streamlit.components.v1 import html
# from dotenv import load_dotenv
from PyPDF2 import PdfReader
from PIL import Image
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Local file
from htmlTemplates import css, bot_template, user_template
##################################################################################
# Admin flags
DISPLAY_DIALOG_LINES = 6
SESSION_STARTED = False
# MODEL_NAME="deepset/roberta-base-squad2"
# MODEL_NAME="BEE-spoke-data/TinyLlama-3T-1.1bee"
# MODEL_NAME='HuggingFaceH4/zephyr-7b-beta'
##############################################################
# Our model and tokenizer
#
# MODEL_NAME = "facebook/blenderbot-400M-distill"
MODEL_NAME = "facebook/blenderbot-3B"
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
##################################################################################
def process_user_question(user_question):
# if not SESSION_STARTED:
# print('No Session')
# st.write( 'Please upload and analyze your PDF files first!')
# return
if user_question == None:
print('question is null')
return
if user_question == '':
print('question is blank')
return
if st == None:
print('session is null')
return
if st.session_state == None:
print('session STATE is null')
return
print('question is: ', user_question)
print('\nsession is: ', st)
#################################################################
# Track the overall time for training & submission preparation
# #
from datetime import datetime
global_now = datetime.now()
global_current_time = global_now.strftime("%H:%M:%S")
print("# app.py Starting up... - Current Time =", global_current_time)
st.write(('Question: ' + user_question ), unsafe_allow_html=True)
# input_text = input('Say something--> ')
print( 'history--> ', st.session_state.history_string)
################################################################
# Tokenize the user prompt and conversation history
inputs = tokenizer.encode_plus( st.session_state.history_string, user_question, return_tensors="pt" )
# st.write('Len of inputs= ', len( inputs))
# Generate a response
outputs = model.generate( **inputs )
# decode the response
response = tokenizer.decode( outputs[0], skip_special_tokens=True).strip()
# append history
st.session_state.conversation_history.append(user_question)
st.session_state.conversation_history.append(response)
# st.session_state.history_string = "/n".join(st.session_state.conversation_history)
st.session_state.history_string = "<br>".join( st.session_state.conversation_history )
st.write( 'Response: ', response)
# Mission Complete!
##################################################################################
global_later = datetime.now()
st.write("Total query execute Time =", (global_later - global_now), global_later)
#################################################################################
def main():
print('Pennwick Starting up...\n')
##################################################################
# Initial conversation tracking
if not hasattr(st.session_state, "conversation_history"):
st.session_state.conversation_history = []
if not hasattr(st.session_state, "history_string"):
st.session_state.history_string = "\n".join(st.session_state.conversation_history)
# Load the environment variables - if any
# load_dotenv()
st.set_page_config(page_title="Pennwick Honeybee Robot",
page_icon="./HoneybeeLogo.ico")
st.write(css, unsafe_allow_html=True)
st.image("./HoneybeeLogo.png", width=96)
st.header(f"Pennwick Honeybee Robot - BETA VERSION")
print('Prepared page...\n')
user_question = None
user_question = st.text_input("Ask the Open Source - "+MODEL_NAME+" - Model any question about Honeybees...")
if user_question != None:
print('calling process question', user_question)
process_user_question(user_question)
html_history_string = ""
if len( st.session_state.history_string ) > 100:
html_history_string = st.session_state.history_string[-100:]
else:
html_history_string = st.session_state.history_string
html(html_history_string , height=150, scrolling=True)
# st.write( user_template, unsafe_allow_html=True)
# st.write(user_template.replace( "{{MSG}}", "Hello robot!"), unsafe_allow_html=True)
# st.write(bot_template.replace( "{{MSG}}", "Hello human!"), unsafe_allow_html=True)
#
# with st.sidebar:
#
# st.subheader("Which documents would you like to analyze?")
# st.subheader("(no data is saved beyond the session)")
#
# pdf_docs = st.file_uploader(
# "Upload your PDF documents here and click on 'Analyze'", accept_multiple_files=True)
#
# # Upon button press
# if st.button("Analyze these files"):
# with st.spinner("Processing..."):
# #################################################################
# # Track the overall time for file processing into Vectors
# # #
# from datetime import datetime
# global_now = datetime.now()
# global_current_time = global_now.strftime("%H:%M:%S")
# st.write("Vectorizing Files - Current Time =", global_current_time)
#
# # get pdf text
# raw_text = extract_pdf_text(pdf_docs)
# # st.write(raw_text)
#
# # # get the text chunks
# text_chunks = extract_bitesize_pieces(raw_text)
# # st.write(text_chunks)
#
# # # create vector store
# vectorstore = prepare_embedding_vectors(text_chunks)
#
# # # create conversation chain
# st.session_state.conversation = prepare_conversation(vectorstore)
#
# SESSION_STARTED = True
#
# # Mission Complete!
# global_later = datetime.now()
# st.write("Files Vectorized - Total EXECUTION Time =",
# (global_later - global_now), global_later)
#
if __name__ == '__main__':
main()
|