miki5799's picture
Extract jupyter notebook and nlp4web-codebase contents to hf shitspace repo
5270fb9
raw
history blame
6.7 kB
import os
from typing import Dict, List, Optional, Protocol
import pandas as pd
import tqdm
import ujson
from nlp4web_codebase.ir.data_loaders import IRDataset
def round_dict(obj: Dict[str, float], ndigits: int = 4) -> Dict[str, float]:
return {k: round(v, ndigits=ndigits) for k, v in obj.items()}
def sort_dict(obj: Dict[str, float], reverse: bool = True) -> Dict[str, float]:
return dict(sorted(obj.items(), key=lambda pair: pair[1], reverse=reverse))
def save_ranking_results(
output_dir: str,
query_ids: List[str],
rankings: List[Dict[str, float]],
query_performances_lists: List[Dict[str, float]],
cid2tweights_lists: Optional[List[Dict[str, Dict[str, float]]]] = None,
):
os.makedirs(output_dir, exist_ok=True)
output_path = os.path.join(output_dir, "ranking_results.jsonl")
rows = []
for i, (query_id, ranking, query_performances) in enumerate(
zip(query_ids, rankings, query_performances_lists)
):
row = {
"query_id": query_id,
"ranking": round_dict(ranking),
"query_performances": round_dict(query_performances),
"cid2tweights": {},
}
if cid2tweights_lists is not None:
row["cid2tweights"] = {
cid: round_dict(tws) for cid, tws in cid2tweights_lists[i].items()
}
rows.append(row)
pd.DataFrame(rows).to_json(
output_path,
orient="records",
lines=True,
)
class TermWeightingFunction(Protocol):
def __call__(self, query: str, cid: str) -> Dict[str, float]: ...
def compare(
dataset: IRDataset,
results_path1: str,
results_path2: str,
output_dir: str,
main_metric: str = "recip_rank",
system1: Optional[str] = None,
system2: Optional[str] = None,
term_weighting_fn1: Optional[TermWeightingFunction] = None,
term_weighting_fn2: Optional[TermWeightingFunction] = None,
) -> None:
os.makedirs(output_dir, exist_ok=True)
df1 = pd.read_json(results_path1, orient="records", lines=True)
df2 = pd.read_json(results_path2, orient="records", lines=True)
assert len(df1) == len(df2)
all_qrels = {}
for split in dataset.split2qrels:
all_qrels.update(dataset.get_qrels_dict(split))
qid2query = {query.query_id: query for query in dataset.queries}
cid2doc = {doc.collection_id: doc for doc in dataset.corpus}
diff_col = f"{main_metric}:qp1-qp2"
merged = pd.merge(df1, df2, on="query_id", how="outer")
rows = []
for _, example in tqdm.tqdm(merged.iterrows(), desc="Comparing", total=len(merged)):
docs = {cid: cid2doc[cid].text for cid in dict(example["ranking_x"])}
docs.update({cid: cid2doc[cid].text for cid in dict(example["ranking_y"])})
query_id = example["query_id"]
row = {
"query_id": query_id,
"query": qid2query[query_id].text,
diff_col: example["query_performances_x"][main_metric]
- example["query_performances_y"][main_metric],
"ranking1": ujson.dumps(example["ranking_x"], indent=4),
"ranking2": ujson.dumps(example["ranking_y"], indent=4),
"docs": ujson.dumps(docs, indent=4),
"query_performances1": ujson.dumps(
example["query_performances_x"], indent=4
),
"query_performances2": ujson.dumps(
example["query_performances_y"], indent=4
),
"qrels": ujson.dumps(all_qrels[query_id], indent=4),
}
if term_weighting_fn1 is not None and term_weighting_fn2 is not None:
all_cids = set(example["ranking_x"]) | set(example["ranking_y"])
cid2tweights1 = {}
cid2tweights2 = {}
ranking1 = {}
ranking2 = {}
for cid in all_cids:
tweights1 = term_weighting_fn1(query=qid2query[query_id].text, cid=cid)
tweights2 = term_weighting_fn2(query=qid2query[query_id].text, cid=cid)
ranking1[cid] = sum(tweights1.values())
ranking2[cid] = sum(tweights2.values())
cid2tweights1[cid] = tweights1
cid2tweights2[cid] = tweights2
ranking1 = sort_dict(ranking1)
ranking2 = sort_dict(ranking2)
row["ranking1"] = ujson.dumps(ranking1, indent=4)
row["ranking2"] = ujson.dumps(ranking2, indent=4)
cid2tweights1 = {cid: cid2tweights1[cid] for cid in ranking1}
cid2tweights2 = {cid: cid2tweights2[cid] for cid in ranking2}
row["cid2tweights1"] = ujson.dumps(cid2tweights1, indent=4)
row["cid2tweights2"] = ujson.dumps(cid2tweights2, indent=4)
rows.append(row)
table = pd.DataFrame(rows).sort_values(by=diff_col, ascending=False)
output_path = os.path.join(output_dir, f"compare-{system1}_vs_{system2}.tsv")
table.to_csv(output_path, sep="\t", index=False)
# if __name__ == "__main__":
# # python -m lecture2.bm25.analysis
# from nlp4web_codebase.ir.data_loaders.sciq import load_sciq
# from lecture2.bm25.bm25_retriever import BM25Retriever
# from lecture2.bm25.tfidf_retriever import TFIDFRetriever
# import numpy as np
# sciq = load_sciq()
# system1 = "bm25"
# system2 = "tfidf"
# results_path1 = f"output/sciq-{system1}/results/ranking_results.jsonl"
# results_path2 = f"output/sciq-{system2}/results/ranking_results.jsonl"
# index_dir1 = f"output/sciq-{system1}"
# index_dir2 = f"output/sciq-{system2}"
# compare(
# dataset=sciq,
# results_path1=results_path1,
# results_path2=results_path2,
# output_dir=f"output/sciq-{system1}_vs_{system2}",
# system1=system1,
# system2=system2,
# term_weighting_fn1=BM25Retriever(index_dir1).get_term_weights,
# term_weighting_fn2=TFIDFRetriever(index_dir2).get_term_weights,
# )
# # bias on #shared_terms of TFIDF:
# df1 = pd.read_json(results_path1, orient="records", lines=True)
# df2 = pd.read_json(results_path2, orient="records", lines=True)
# merged = pd.merge(df1, df2, on="query_id", how="outer")
# nterms1 = []
# nterms2 = []
# for _, row in merged.iterrows():
# nterms1.append(len(list(dict(row["cid2tweights_x"]).values())[0]))
# nterms2.append(len(list(dict(row["cid2tweights_y"]).values())[0]))
# percentiles = (5, 25, 50, 75, 95)
# print(system1, np.percentile(nterms1, percentiles), np.mean(nterms1).round(2))
# print(system2, np.percentile(nterms2, percentiles), np.mean(nterms2).round(2))
# # bm25 [ 3. 4. 5. 7. 11.] 5.64
# # tfidf [1. 2. 3. 5. 9.] 3.58