Update app.py
Browse files
app.py
CHANGED
@@ -41,15 +41,19 @@ def pil_to_binary_mask(pil_image, threshold=0):
|
|
41 |
# Duration timeを設定
|
42 |
duration = 60
|
43 |
|
|
|
|
|
44 |
base_path = 'yisol/IDM-VTON'
|
45 |
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
46 |
|
|
|
47 |
unet = UNet2DConditionModel.from_pretrained(
|
48 |
base_path,
|
49 |
subfolder="unet",
|
50 |
torch_dtype=torch.float16,
|
51 |
-
)
|
52 |
unet.requires_grad_(False)
|
|
|
53 |
tokenizer_one = AutoTokenizer.from_pretrained(
|
54 |
base_path,
|
55 |
subfolder="tokenizer",
|
@@ -68,38 +72,42 @@ text_encoder_one = CLIPTextModel.from_pretrained(
|
|
68 |
base_path,
|
69 |
subfolder="text_encoder",
|
70 |
torch_dtype=torch.float16,
|
71 |
-
)
|
72 |
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
|
73 |
base_path,
|
74 |
subfolder="text_encoder_2",
|
75 |
torch_dtype=torch.float16,
|
76 |
-
)
|
77 |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
78 |
base_path,
|
79 |
subfolder="image_encoder",
|
80 |
torch_dtype=torch.float16,
|
81 |
-
)
|
82 |
vae = AutoencoderKL.from_pretrained(
|
83 |
base_path,
|
84 |
subfolder="vae",
|
85 |
torch_dtype=torch.float16,
|
86 |
-
)
|
87 |
|
88 |
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
|
89 |
base_path,
|
90 |
subfolder="unet_encoder",
|
91 |
torch_dtype=torch.float16,
|
92 |
-
)
|
93 |
|
94 |
parsing_model = Parsing(0)
|
95 |
openpose_model = OpenPose(0)
|
96 |
|
|
|
|
|
|
|
97 |
UNet_Encoder.requires_grad_(False)
|
98 |
image_encoder.requires_grad_(False)
|
99 |
vae.requires_grad_(False)
|
100 |
unet.requires_grad_(False)
|
101 |
text_encoder_one.requires_grad_(False)
|
102 |
text_encoder_two.requires_grad_(False)
|
|
|
103 |
tensor_transfrom = transforms.Compose(
|
104 |
[
|
105 |
transforms.ToTensor(),
|
@@ -119,20 +127,16 @@ pipe = TryonPipeline.from_pretrained(
|
|
119 |
scheduler=noise_scheduler,
|
120 |
image_encoder=image_encoder,
|
121 |
torch_dtype=torch.float16,
|
122 |
-
)
|
123 |
pipe.unet_encoder = UNet_Encoder
|
124 |
|
125 |
@spaces.GPU(duration=duration) # duration変数を使用
|
126 |
def start_tryon(
|
127 |
dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, num_images
|
128 |
):
|
129 |
-
device = "cuda"
|
130 |
-
|
131 |
start_time = time.time() # 処理開始時間を記録
|
132 |
|
133 |
-
|
134 |
-
pipe.to(device)
|
135 |
-
pipe.unet_encoder.to(device)
|
136 |
|
137 |
garm_img = garm_img.convert("RGB").resize((768, 1024))
|
138 |
human_img_orig = dict["background"].convert("RGB")
|
@@ -355,4 +359,4 @@ with image_blocks as demo:
|
|
355 |
api_name='tryon',
|
356 |
)
|
357 |
|
358 |
-
image_blocks.launch(show_error=True)
|
|
|
41 |
# Duration timeを設定
|
42 |
duration = 60
|
43 |
|
44 |
+
device = "cuda"
|
45 |
+
|
46 |
base_path = 'yisol/IDM-VTON'
|
47 |
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
48 |
|
49 |
+
# モデルのロードと初期化を関数外で行う
|
50 |
unet = UNet2DConditionModel.from_pretrained(
|
51 |
base_path,
|
52 |
subfolder="unet",
|
53 |
torch_dtype=torch.float16,
|
54 |
+
).to(device)
|
55 |
unet.requires_grad_(False)
|
56 |
+
|
57 |
tokenizer_one = AutoTokenizer.from_pretrained(
|
58 |
base_path,
|
59 |
subfolder="tokenizer",
|
|
|
72 |
base_path,
|
73 |
subfolder="text_encoder",
|
74 |
torch_dtype=torch.float16,
|
75 |
+
).to(device)
|
76 |
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
|
77 |
base_path,
|
78 |
subfolder="text_encoder_2",
|
79 |
torch_dtype=torch.float16,
|
80 |
+
).to(device)
|
81 |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
82 |
base_path,
|
83 |
subfolder="image_encoder",
|
84 |
torch_dtype=torch.float16,
|
85 |
+
).to(device)
|
86 |
vae = AutoencoderKL.from_pretrained(
|
87 |
base_path,
|
88 |
subfolder="vae",
|
89 |
torch_dtype=torch.float16,
|
90 |
+
).to(device)
|
91 |
|
92 |
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
|
93 |
base_path,
|
94 |
subfolder="unet_encoder",
|
95 |
torch_dtype=torch.float16,
|
96 |
+
).to(device)
|
97 |
|
98 |
parsing_model = Parsing(0)
|
99 |
openpose_model = OpenPose(0)
|
100 |
|
101 |
+
# モデルをGPUに転送
|
102 |
+
parsing_model.model.to(device)
|
103 |
+
openpose_model.preprocessor.body_estimation.model.to(device)
|
104 |
UNet_Encoder.requires_grad_(False)
|
105 |
image_encoder.requires_grad_(False)
|
106 |
vae.requires_grad_(False)
|
107 |
unet.requires_grad_(False)
|
108 |
text_encoder_one.requires_grad_(False)
|
109 |
text_encoder_two.requires_grad_(False)
|
110 |
+
|
111 |
tensor_transfrom = transforms.Compose(
|
112 |
[
|
113 |
transforms.ToTensor(),
|
|
|
127 |
scheduler=noise_scheduler,
|
128 |
image_encoder=image_encoder,
|
129 |
torch_dtype=torch.float16,
|
130 |
+
).to(device)
|
131 |
pipe.unet_encoder = UNet_Encoder
|
132 |
|
133 |
@spaces.GPU(duration=duration) # duration変数を使用
|
134 |
def start_tryon(
|
135 |
dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, num_images
|
136 |
):
|
|
|
|
|
137 |
start_time = time.time() # 処理開始時間を記録
|
138 |
|
139 |
+
# device変数の再定義やモデルの.to(device)呼び出しを削除
|
|
|
|
|
140 |
|
141 |
garm_img = garm_img.convert("RGB").resize((768, 1024))
|
142 |
human_img_orig = dict["background"].convert("RGB")
|
|
|
359 |
api_name='tryon',
|
360 |
)
|
361 |
|
362 |
+
image_blocks.launch(show_error=True)
|