Spaces:
mikitona
/
Running on Zero

mikitona commited on
Commit
4f711d2
ยท
verified ยท
1 Parent(s): 18d9979

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +180 -155
app.py CHANGED
@@ -10,7 +10,7 @@ from transformers import (
10
  CLIPTextModel,
11
  CLIPTextModelWithProjection,
12
  )
13
- from diffusers import DDPMScheduler,AutoencoderKL
14
  from typing import List
15
 
16
  import torch
@@ -22,7 +22,7 @@ from torchvision import transforms
22
  import apply_net
23
  from preprocess.humanparsing.run_parsing import Parsing
24
  from preprocess.openpose.run_openpose import OpenPose
25
- from detectron2.data.detection_utils import convert_PIL_to_numpy,_apply_exif_orientation
26
  from torchvision.transforms.functional import to_pil_image
27
 
28
 
@@ -33,9 +33,9 @@ def pil_to_binary_mask(pil_image, threshold=0):
33
  mask = np.zeros(binary_mask.shape, dtype=np.uint8)
34
  for i in range(binary_mask.shape[0]):
35
  for j in range(binary_mask.shape[1]):
36
- if binary_mask[i,j] == True :
37
- mask[i,j] = 1
38
- mask = (mask*255).astype(np.uint8)
39
  output_mask = Image.fromarray(mask)
40
  return output_mask
41
 
@@ -77,13 +77,13 @@ image_encoder = CLIPVisionModelWithProjection.from_pretrained(
77
  base_path,
78
  subfolder="image_encoder",
79
  torch_dtype=torch.float16,
80
- )
81
- vae = AutoencoderKL.from_pretrained(base_path,
82
- subfolder="vae",
83
- torch_dtype=torch.float16,
 
84
  )
85
 
86
- # "stabilityai/stable-diffusion-xl-base-1.0",
87
  UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
88
  base_path,
89
  subfolder="unet_encoder",
@@ -100,38 +100,41 @@ unet.requires_grad_(False)
100
  text_encoder_one.requires_grad_(False)
101
  text_encoder_two.requires_grad_(False)
102
  tensor_transfrom = transforms.Compose(
103
- [
104
- transforms.ToTensor(),
105
- transforms.Normalize([0.5], [0.5]),
106
- ]
107
- )
108
 
109
  pipe = TryonPipeline.from_pretrained(
110
- base_path,
111
- unet=unet,
112
- vae=vae,
113
- feature_extractor= CLIPImageProcessor(),
114
- text_encoder = text_encoder_one,
115
- text_encoder_2 = text_encoder_two,
116
- tokenizer = tokenizer_one,
117
- tokenizer_2 = tokenizer_two,
118
- scheduler = noise_scheduler,
119
- image_encoder=image_encoder,
120
- torch_dtype=torch.float16,
121
  )
122
  pipe.unet_encoder = UNet_Encoder
123
 
124
- @spaces.GPU(duration=50) # ๅฎŸ่กŒๆ™‚้–“ใ‚’120็ง’ใซ่จญๅฎš
125
- def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_steps,seed):
 
 
 
126
  device = "cuda"
127
-
128
  openpose_model.preprocessor.body_estimation.model.to(device)
129
  pipe.to(device)
130
  pipe.unet_encoder.to(device)
131
 
132
- garm_img= garm_img.convert("RGB").resize((768,1024))
133
- human_img_orig = dict["background"].convert("RGB")
134
-
135
  if is_checked_crop:
136
  width, height = human_img_orig.size
137
  target_width = int(min(width, height * (3 / 4)))
@@ -142,172 +145,194 @@ def start_tryon(dict,garm_img,garment_des,is_checked,is_checked_crop,denoise_ste
142
  bottom = (height + target_height) / 2
143
  cropped_img = human_img_orig.crop((left, top, right, bottom))
144
  crop_size = cropped_img.size
145
- human_img = cropped_img.resize((768,1024))
146
  else:
147
- human_img = human_img_orig.resize((768,1024))
148
-
149
 
150
  if is_checked:
151
- keypoints = openpose_model(human_img.resize((384,512)))
152
- model_parse, _ = parsing_model(human_img.resize((384,512)))
153
  mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
154
- mask = mask.resize((768,1024))
155
  else:
156
  mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
157
- # mask = transforms.ToTensor()(mask)
158
- # mask = mask.unsqueeze(0)
159
- mask_gray = (1-transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
160
- mask_gray = to_pil_image((mask_gray+1.0)/2.0)
161
-
162
 
163
- human_img_arg = _apply_exif_orientation(human_img.resize((384,512)))
164
  human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
165
-
166
-
167
-
168
- args = apply_net.create_argument_parser().parse_args(('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda'))
169
- # verbosity = getattr(args, "verbosity", None)
170
- pose_img = args.func(args,human_img_arg)
171
- pose_img = pose_img[:,:,::-1]
172
- pose_img = Image.fromarray(pose_img).resize((768,1024))
173
-
 
 
 
 
 
 
 
 
174
  with torch.no_grad():
175
- # Extract the images
176
  with torch.cuda.amp.autocast():
177
- with torch.no_grad():
178
- prompt = "model is wearing " + garment_des
179
- negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
180
- with torch.inference_mode():
181
- (
182
- prompt_embeds,
183
- negative_prompt_embeds,
184
- pooled_prompt_embeds,
185
- negative_pooled_prompt_embeds,
186
- ) = pipe.encode_prompt(
187
- prompt,
188
- num_images_per_prompt=1,
189
- do_classifier_free_guidance=True,
190
- negative_prompt=negative_prompt,
191
- )
192
-
193
- prompt = "a photo of " + garment_des
194
- negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
195
- if not isinstance(prompt, List):
196
- prompt = [prompt] * 1
197
- if not isinstance(negative_prompt, List):
198
- negative_prompt = [negative_prompt] * 1
199
- with torch.inference_mode():
200
- (
201
- prompt_embeds_c,
202
- _,
203
- _,
204
- _,
205
- ) = pipe.encode_prompt(
206
- prompt,
207
- num_images_per_prompt=1,
208
- do_classifier_free_guidance=False,
209
- negative_prompt=negative_prompt,
210
- )
211
-
212
-
213
-
214
- pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device,torch.float16)
215
- garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device,torch.float16)
216
- generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
217
- images = pipe(
218
- prompt_embeds=prompt_embeds.to(device,torch.float16),
219
- negative_prompt_embeds=negative_prompt_embeds.to(device,torch.float16),
220
- pooled_prompt_embeds=pooled_prompt_embeds.to(device,torch.float16),
221
- negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device,torch.float16),
222
- num_inference_steps=denoise_steps,
223
- generator=generator,
224
- strength = 1.0,
225
- pose_img = pose_img.to(device,torch.float16),
226
- text_embeds_cloth=prompt_embeds_c.to(device,torch.float16),
227
- cloth = garm_tensor.to(device,torch.float16),
228
- mask_image=mask,
229
- image=human_img,
230
- height=1024,
231
- width=768,
232
- ip_adapter_image = garm_img.resize((768,1024)),
233
- guidance_scale=2.0,
234
- )[0]
 
 
 
 
 
235
 
236
  if is_checked_crop:
237
- out_img = images[0].resize(crop_size)
238
- human_img_orig.paste(out_img, (int(left), int(top)))
239
- return human_img_orig, mask_gray
 
 
 
240
  else:
241
- return images[0], mask_gray
242
- # return images[0], mask_gray
243
 
244
- garm_list = os.listdir(os.path.join(example_path,"cloth"))
245
- garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
246
 
247
- human_list = os.listdir(os.path.join(example_path,"human"))
248
- human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
249
 
250
  human_ex_list = []
251
  for ex_human in human_list_path:
252
- ex_dict= {}
253
  ex_dict['background'] = ex_human
254
  ex_dict['layers'] = None
255
  ex_dict['composite'] = None
256
  human_ex_list.append(ex_dict)
257
 
258
- ##default human
259
-
260
-
261
  image_blocks = gr.Blocks().queue()
262
  with image_blocks as demo:
263
  gr.Markdown("## IDM-VTON ๐Ÿ‘•๐Ÿ‘”๐Ÿ‘š")
264
- gr.Markdown("Virtual Try-on with your image and garment image. Check out the [source codes](https://github.com/yisol/IDM-VTON) and the [model](https://huggingface.co/yisol/IDM-VTON)")
 
 
265
  with gr.Row():
266
  with gr.Column():
267
- imgs = gr.ImageEditor(sources='upload', type="pil", label='Human. Mask with pen or use auto-masking', interactive=True)
 
 
 
 
 
268
  with gr.Row():
269
- is_checked = gr.Checkbox(label="Yes", info="Use auto-generated mask (Takes 5 seconds)",value=True)
 
 
270
  with gr.Row():
271
- is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing",value=False)
272
 
273
- example = gr.Examples(
274
- inputs=imgs,
275
- examples_per_page=10,
276
- examples=human_ex_list
277
- )
278
 
279
  with gr.Column():
280
  garm_img = gr.Image(label="Garment", sources='upload', type="pil")
281
  with gr.Row(elem_id="prompt-container"):
282
  with gr.Row():
283
- prompt = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", show_label=False, elem_id="prompt")
284
- example = gr.Examples(
285
- inputs=garm_img,
286
- examples_per_page=8,
287
- examples=garm_list_path)
 
288
  with gr.Column():
289
- # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
290
- masked_img = gr.Image(label="Masked image output", elem_id="masked-img",show_share_button=False)
291
  with gr.Column():
292
- # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
293
- image_out = gr.Image(label="Output", elem_id="output-img",show_share_button=False)
294
-
295
-
296
-
297
 
298
  with gr.Column():
299
  try_button = gr.Button(value="Try-on")
300
  with gr.Accordion(label="Advanced Settings", open=False):
301
  with gr.Row():
302
- denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=40, value=30, step=1)
 
 
303
  seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
304
-
305
-
306
-
307
- try_button.click(fn=start_tryon, inputs=[imgs, garm_img, prompt, is_checked,is_checked_crop, denoise_steps, seed], outputs=[image_out,masked_img], api_name='tryon')
308
-
309
-
310
-
 
 
 
 
 
 
 
 
 
 
 
 
311
 
312
  image_blocks.launch()
313
-
 
10
  CLIPTextModel,
11
  CLIPTextModelWithProjection,
12
  )
13
+ from diffusers import DDPMScheduler, AutoencoderKL
14
  from typing import List
15
 
16
  import torch
 
22
  import apply_net
23
  from preprocess.humanparsing.run_parsing import Parsing
24
  from preprocess.openpose.run_openpose import OpenPose
25
+ from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
26
  from torchvision.transforms.functional import to_pil_image
27
 
28
 
 
33
  mask = np.zeros(binary_mask.shape, dtype=np.uint8)
34
  for i in range(binary_mask.shape[0]):
35
  for j in range(binary_mask.shape[1]):
36
+ if binary_mask[i, j]:
37
+ mask[i, j] = 1
38
+ mask = (mask * 255).astype(np.uint8)
39
  output_mask = Image.fromarray(mask)
40
  return output_mask
41
 
 
77
  base_path,
78
  subfolder="image_encoder",
79
  torch_dtype=torch.float16,
80
+ )
81
+ vae = AutoencoderKL.from_pretrained(
82
+ base_path,
83
+ subfolder="vae",
84
+ torch_dtype=torch.float16,
85
  )
86
 
 
87
  UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
88
  base_path,
89
  subfolder="unet_encoder",
 
100
  text_encoder_one.requires_grad_(False)
101
  text_encoder_two.requires_grad_(False)
102
  tensor_transfrom = transforms.Compose(
103
+ [
104
+ transforms.ToTensor(),
105
+ transforms.Normalize([0.5], [0.5]),
106
+ ]
107
+ )
108
 
109
  pipe = TryonPipeline.from_pretrained(
110
+ base_path,
111
+ unet=unet,
112
+ vae=vae,
113
+ feature_extractor=CLIPImageProcessor(),
114
+ text_encoder=text_encoder_one,
115
+ text_encoder_2=text_encoder_two,
116
+ tokenizer=tokenizer_one,
117
+ tokenizer_2=tokenizer_two,
118
+ scheduler=noise_scheduler,
119
+ image_encoder=image_encoder,
120
+ torch_dtype=torch.float16,
121
  )
122
  pipe.unet_encoder = UNet_Encoder
123
 
124
+
125
+ @spaces.GPU(duration=50) # ๅฎŸ่กŒๆ™‚้–“ใ‚’50็ง’ใซ่จญๅฎš
126
+ def start_tryon(
127
+ dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, num_images
128
+ ):
129
  device = "cuda"
130
+
131
  openpose_model.preprocessor.body_estimation.model.to(device)
132
  pipe.to(device)
133
  pipe.unet_encoder.to(device)
134
 
135
+ garm_img = garm_img.convert("RGB").resize((768, 1024))
136
+ human_img_orig = dict["background"].convert("RGB")
137
+
138
  if is_checked_crop:
139
  width, height = human_img_orig.size
140
  target_width = int(min(width, height * (3 / 4)))
 
145
  bottom = (height + target_height) / 2
146
  cropped_img = human_img_orig.crop((left, top, right, bottom))
147
  crop_size = cropped_img.size
148
+ human_img = cropped_img.resize((768, 1024))
149
  else:
150
+ human_img = human_img_orig.resize((768, 1024))
 
151
 
152
  if is_checked:
153
+ keypoints = openpose_model(human_img.resize((384, 512)))
154
+ model_parse, _ = parsing_model(human_img.resize((384, 512)))
155
  mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
156
+ mask = mask.resize((768, 1024))
157
  else:
158
  mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
159
+ mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
160
+ mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
 
 
 
161
 
162
+ human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
163
  human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
164
+
165
+ args = apply_net.create_argument_parser().parse_args(
166
+ (
167
+ 'show',
168
+ './configs/densepose_rcnn_R_50_FPN_s1x.yaml',
169
+ './ckpt/densepose/model_final_162be9.pkl',
170
+ 'dp_segm',
171
+ '-v',
172
+ '--opts',
173
+ 'MODEL.DEVICE',
174
+ 'cuda',
175
+ )
176
+ )
177
+ pose_img = args.func(args, human_img_arg)
178
+ pose_img = pose_img[:, :, ::-1]
179
+ pose_img = Image.fromarray(pose_img).resize((768, 1024))
180
+
181
  with torch.no_grad():
 
182
  with torch.cuda.amp.autocast():
183
+ prompt = "model is wearing " + garment_des
184
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
185
+ (
186
+ prompt_embeds,
187
+ negative_prompt_embeds,
188
+ pooled_prompt_embeds,
189
+ negative_pooled_prompt_embeds,
190
+ ) = pipe.encode_prompt(
191
+ prompt,
192
+ num_images_per_prompt=num_images,
193
+ do_classifier_free_guidance=True,
194
+ negative_prompt=negative_prompt,
195
+ )
196
+
197
+ prompt = "a photo of " + garment_des
198
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
199
+ if not isinstance(prompt, List):
200
+ prompt = [prompt] * num_images
201
+ if not isinstance(negative_prompt, List):
202
+ negative_prompt = [negative_prompt] * num_images
203
+ (
204
+ prompt_embeds_c,
205
+ _,
206
+ _,
207
+ _,
208
+ ) = pipe.encode_prompt(
209
+ prompt,
210
+ num_images_per_prompt=num_images,
211
+ do_classifier_free_guidance=False,
212
+ negative_prompt=negative_prompt,
213
+ )
214
+
215
+ pose_img_tensor = tensor_transfrom(pose_img).unsqueeze(0).to(device, torch.float16)
216
+ garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device, torch.float16)
217
+ pose_img_tensor = pose_img_tensor.repeat(num_images, 1, 1, 1)
218
+ garm_tensor = garm_tensor.repeat(num_images, 1, 1, 1)
219
+ human_imgs = [human_img] * num_images
220
+ masks = [mask] * num_images
221
+ ip_adapter_images = [garm_img.resize((768, 1024))] * num_images
222
+
223
+ if seed is not None and seed != -1:
224
+ generator = [torch.Generator(device).manual_seed(seed + i) for i in range(num_images)]
225
+ else:
226
+ generator = None
227
+
228
+ images = pipe(
229
+ prompt_embeds=prompt_embeds.to(device, torch.float16),
230
+ negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
231
+ pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16),
232
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16),
233
+ num_inference_steps=denoise_steps,
234
+ generator=generator,
235
+ strength=1.0,
236
+ pose_img=pose_img_tensor.to(device, torch.float16),
237
+ text_embeds_cloth=prompt_embeds_c.to(device, torch.float16),
238
+ cloth=garm_tensor.to(device, torch.float16),
239
+ mask_image=masks,
240
+ image=human_imgs,
241
+ height=1024,
242
+ width=768,
243
+ ip_adapter_image=ip_adapter_images,
244
+ guidance_scale=2.0,
245
+ )[0]
246
 
247
  if is_checked_crop:
248
+ output_images = []
249
+ for img in images:
250
+ out_img = img.resize(crop_size)
251
+ human_img_orig.paste(out_img, (int(left), int(top)))
252
+ output_images.append(human_img_orig.copy())
253
+ return output_images, mask_gray
254
  else:
255
+ return images, mask_gray
256
+
257
 
258
+ garm_list = os.listdir(os.path.join(example_path, "cloth"))
259
+ garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list]
260
 
261
+ human_list = os.listdir(os.path.join(example_path, "human"))
262
+ human_list_path = [os.path.join(example_path, "human", human) for human in human_list]
263
 
264
  human_ex_list = []
265
  for ex_human in human_list_path:
266
+ ex_dict = {}
267
  ex_dict['background'] = ex_human
268
  ex_dict['layers'] = None
269
  ex_dict['composite'] = None
270
  human_ex_list.append(ex_dict)
271
 
 
 
 
272
  image_blocks = gr.Blocks().queue()
273
  with image_blocks as demo:
274
  gr.Markdown("## IDM-VTON ๐Ÿ‘•๐Ÿ‘”๐Ÿ‘š")
275
+ gr.Markdown(
276
+ "Virtual Try-on with your image and garment image. Check out the [source codes](https://github.com/yisol/IDM-VTON) and the [model](https://huggingface.co/yisol/IDM-VTON)"
277
+ )
278
  with gr.Row():
279
  with gr.Column():
280
+ imgs = gr.ImageEditor(
281
+ sources='upload',
282
+ type="pil",
283
+ label='Human. Mask with pen or use auto-masking',
284
+ interactive=True,
285
+ )
286
  with gr.Row():
287
+ is_checked = gr.Checkbox(
288
+ label="Yes", info="Use auto-generated mask (Takes 5 seconds)", value=True
289
+ )
290
  with gr.Row():
291
+ is_checked_crop = gr.Checkbox(label="Yes", info="Use auto-crop & resizing", value=False)
292
 
293
+ example = gr.Examples(inputs=imgs, examples_per_page=10, examples=human_ex_list)
 
 
 
 
294
 
295
  with gr.Column():
296
  garm_img = gr.Image(label="Garment", sources='upload', type="pil")
297
  with gr.Row(elem_id="prompt-container"):
298
  with gr.Row():
299
+ prompt = gr.Textbox(
300
+ placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts",
301
+ show_label=False,
302
+ elem_id="prompt",
303
+ )
304
+ example = gr.Examples(inputs=garm_img, examples_per_page=8, examples=garm_list_path)
305
  with gr.Column():
306
+ masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False)
 
307
  with gr.Column():
308
+ image_out = gr.Gallery(label="Output", elem_id="output-img", show_share_button=False)
 
 
 
 
309
 
310
  with gr.Column():
311
  try_button = gr.Button(value="Try-on")
312
  with gr.Accordion(label="Advanced Settings", open=False):
313
  with gr.Row():
314
+ denoise_steps = gr.Number(
315
+ label="Denoising Steps", minimum=20, maximum=40, value=30, step=1
316
+ )
317
  seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
318
+ num_images = gr.Slider(
319
+ label="Number of Images", minimum=1, maximum=5, step=1, value=1
320
+ )
321
+
322
+ try_button.click(
323
+ fn=start_tryon,
324
+ inputs=[
325
+ imgs,
326
+ garm_img,
327
+ prompt,
328
+ is_checked,
329
+ is_checked_crop,
330
+ denoise_steps,
331
+ seed,
332
+ num_images,
333
+ ],
334
+ outputs=[image_out, masked_img],
335
+ api_name='tryon',
336
+ )
337
 
338
  image_blocks.launch()