Update app.py
Browse files
app.py
CHANGED
@@ -23,7 +23,7 @@ from preprocess.humanparsing.run_parsing import Parsing
|
|
23 |
from preprocess.openpose.run_openpose import OpenPose
|
24 |
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
|
25 |
from torchvision.transforms.functional import to_pil_image
|
26 |
-
|
27 |
|
28 |
def pil_to_binary_mask(pil_image, threshold=0):
|
29 |
np_image = np.array(pil_image)
|
@@ -38,22 +38,16 @@ def pil_to_binary_mask(pil_image, threshold=0):
|
|
38 |
output_mask = Image.fromarray(mask)
|
39 |
return output_mask
|
40 |
|
41 |
-
# Duration timeを設定
|
42 |
-
duration = 60
|
43 |
-
|
44 |
-
device = "cuda"
|
45 |
|
46 |
base_path = 'yisol/IDM-VTON'
|
47 |
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
48 |
|
49 |
-
# モデルのロードと初期化を関数外で行う
|
50 |
unet = UNet2DConditionModel.from_pretrained(
|
51 |
base_path,
|
52 |
subfolder="unet",
|
53 |
torch_dtype=torch.float16,
|
54 |
-
)
|
55 |
unet.requires_grad_(False)
|
56 |
-
|
57 |
tokenizer_one = AutoTokenizer.from_pretrained(
|
58 |
base_path,
|
59 |
subfolder="tokenizer",
|
@@ -72,43 +66,38 @@ text_encoder_one = CLIPTextModel.from_pretrained(
|
|
72 |
base_path,
|
73 |
subfolder="text_encoder",
|
74 |
torch_dtype=torch.float16,
|
75 |
-
)
|
76 |
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
|
77 |
base_path,
|
78 |
subfolder="text_encoder_2",
|
79 |
torch_dtype=torch.float16,
|
80 |
-
)
|
81 |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
82 |
base_path,
|
83 |
subfolder="image_encoder",
|
84 |
torch_dtype=torch.float16,
|
85 |
-
)
|
86 |
vae = AutoencoderKL.from_pretrained(
|
87 |
base_path,
|
88 |
subfolder="vae",
|
89 |
torch_dtype=torch.float16,
|
90 |
-
)
|
91 |
|
92 |
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
|
93 |
base_path,
|
94 |
subfolder="unet_encoder",
|
95 |
torch_dtype=torch.float16,
|
96 |
-
)
|
97 |
|
98 |
parsing_model = Parsing(0)
|
99 |
openpose_model = OpenPose(0)
|
100 |
|
101 |
-
# モデルをGPUに転送
|
102 |
-
# 修正前: parsing_model.model.to(device)
|
103 |
-
parsing_model.parsenet.to(device) # 修正後: 正しい属性名を使用
|
104 |
-
openpose_model.preprocessor.body_estimation.model.to(device)
|
105 |
UNet_Encoder.requires_grad_(False)
|
106 |
image_encoder.requires_grad_(False)
|
107 |
vae.requires_grad_(False)
|
108 |
unet.requires_grad_(False)
|
109 |
text_encoder_one.requires_grad_(False)
|
110 |
text_encoder_two.requires_grad_(False)
|
111 |
-
|
112 |
tensor_transfrom = transforms.Compose(
|
113 |
[
|
114 |
transforms.ToTensor(),
|
@@ -128,16 +117,19 @@ pipe = TryonPipeline.from_pretrained(
|
|
128 |
scheduler=noise_scheduler,
|
129 |
image_encoder=image_encoder,
|
130 |
torch_dtype=torch.float16,
|
131 |
-
)
|
132 |
pipe.unet_encoder = UNet_Encoder
|
133 |
|
134 |
-
|
|
|
135 |
def start_tryon(
|
136 |
dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, num_images
|
137 |
):
|
138 |
-
|
139 |
|
140 |
-
|
|
|
|
|
141 |
|
142 |
garm_img = garm_img.convert("RGB").resize((768, 1024))
|
143 |
human_img_orig = dict["background"].convert("RGB")
|
@@ -226,11 +218,6 @@ def start_tryon(
|
|
226 |
yield output_images.value, mask_gray
|
227 |
|
228 |
for i in range(int(num_images)):
|
229 |
-
# 経過時間をチェック
|
230 |
-
elapsed_time = time.time() - start_time
|
231 |
-
if elapsed_time >= duration - 5: # duration変数を使用
|
232 |
-
break
|
233 |
-
|
234 |
current_seed = seed + i if seed is not None and seed != -1 else None
|
235 |
generator = (
|
236 |
torch.Generator(device).manual_seed(int(current_seed)) if current_seed is not None else None
|
@@ -276,6 +263,7 @@ def start_tryon(
|
|
276 |
# 最終的な結果を返す
|
277 |
return output_images.value, mask_gray
|
278 |
|
|
|
279 |
garm_list = os.listdir(os.path.join(example_path, "cloth"))
|
280 |
garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list]
|
281 |
|
@@ -341,7 +329,7 @@ with image_blocks as demo:
|
|
341 |
)
|
342 |
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
|
343 |
num_images = gr.Slider(
|
344 |
-
label="Number of Images", minimum=1, maximum=10, step=1, value=1
|
345 |
)
|
346 |
|
347 |
try_button.click(
|
|
|
23 |
from preprocess.openpose.run_openpose import OpenPose
|
24 |
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
|
25 |
from torchvision.transforms.functional import to_pil_image
|
26 |
+
|
27 |
|
28 |
def pil_to_binary_mask(pil_image, threshold=0):
|
29 |
np_image = np.array(pil_image)
|
|
|
38 |
output_mask = Image.fromarray(mask)
|
39 |
return output_mask
|
40 |
|
|
|
|
|
|
|
|
|
41 |
|
42 |
base_path = 'yisol/IDM-VTON'
|
43 |
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
44 |
|
|
|
45 |
unet = UNet2DConditionModel.from_pretrained(
|
46 |
base_path,
|
47 |
subfolder="unet",
|
48 |
torch_dtype=torch.float16,
|
49 |
+
)
|
50 |
unet.requires_grad_(False)
|
|
|
51 |
tokenizer_one = AutoTokenizer.from_pretrained(
|
52 |
base_path,
|
53 |
subfolder="tokenizer",
|
|
|
66 |
base_path,
|
67 |
subfolder="text_encoder",
|
68 |
torch_dtype=torch.float16,
|
69 |
+
)
|
70 |
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
|
71 |
base_path,
|
72 |
subfolder="text_encoder_2",
|
73 |
torch_dtype=torch.float16,
|
74 |
+
)
|
75 |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
76 |
base_path,
|
77 |
subfolder="image_encoder",
|
78 |
torch_dtype=torch.float16,
|
79 |
+
)
|
80 |
vae = AutoencoderKL.from_pretrained(
|
81 |
base_path,
|
82 |
subfolder="vae",
|
83 |
torch_dtype=torch.float16,
|
84 |
+
)
|
85 |
|
86 |
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
|
87 |
base_path,
|
88 |
subfolder="unet_encoder",
|
89 |
torch_dtype=torch.float16,
|
90 |
+
)
|
91 |
|
92 |
parsing_model = Parsing(0)
|
93 |
openpose_model = OpenPose(0)
|
94 |
|
|
|
|
|
|
|
|
|
95 |
UNet_Encoder.requires_grad_(False)
|
96 |
image_encoder.requires_grad_(False)
|
97 |
vae.requires_grad_(False)
|
98 |
unet.requires_grad_(False)
|
99 |
text_encoder_one.requires_grad_(False)
|
100 |
text_encoder_two.requires_grad_(False)
|
|
|
101 |
tensor_transfrom = transforms.Compose(
|
102 |
[
|
103 |
transforms.ToTensor(),
|
|
|
117 |
scheduler=noise_scheduler,
|
118 |
image_encoder=image_encoder,
|
119 |
torch_dtype=torch.float16,
|
120 |
+
)
|
121 |
pipe.unet_encoder = UNet_Encoder
|
122 |
|
123 |
+
|
124 |
+
@spaces.GPU(duration=60) # 実行時間を60秒に設定
|
125 |
def start_tryon(
|
126 |
dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed, num_images
|
127 |
):
|
128 |
+
device = "cuda"
|
129 |
|
130 |
+
openpose_model.preprocessor.body_estimation.model.to(device)
|
131 |
+
pipe.to(device)
|
132 |
+
pipe.unet_encoder.to(device)
|
133 |
|
134 |
garm_img = garm_img.convert("RGB").resize((768, 1024))
|
135 |
human_img_orig = dict["background"].convert("RGB")
|
|
|
218 |
yield output_images.value, mask_gray
|
219 |
|
220 |
for i in range(int(num_images)):
|
|
|
|
|
|
|
|
|
|
|
221 |
current_seed = seed + i if seed is not None and seed != -1 else None
|
222 |
generator = (
|
223 |
torch.Generator(device).manual_seed(int(current_seed)) if current_seed is not None else None
|
|
|
263 |
# 最終的な結果を返す
|
264 |
return output_images.value, mask_gray
|
265 |
|
266 |
+
|
267 |
garm_list = os.listdir(os.path.join(example_path, "cloth"))
|
268 |
garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list]
|
269 |
|
|
|
329 |
)
|
330 |
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=42)
|
331 |
num_images = gr.Slider(
|
332 |
+
label="Number of Images", minimum=1, maximum=10, step=1, value=1 # 最大値を10に変更
|
333 |
)
|
334 |
|
335 |
try_button.click(
|