Spaces:
mikitona
/
Running on Zero

mikitona commited on
Commit
4b4cde1
·
verified ·
1 Parent(s): a66ff26

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +822 -248
app.py CHANGED
@@ -1,175 +1,455 @@
1
- from spaces import GPU # 追加
2
-
3
  import os
4
-
5
  import gradio as gr
6
- from gradio_imageslider import ImageSlider
7
  import argparse
8
- from SUPIR.util import HWC3, upscale_image, fix_resize, convert_dtype
9
  import numpy as np
10
  import torch
11
- from torch.cuda.amp import autocast # 追加
12
- from SUPIR.util import create_SUPIR_model, load_QF_ckpt
13
- from PIL import Image
14
- from llava.llava_agent import LLavaAgent
15
- from CKPT_PTH import LLAVA_MODEL_PATH
16
  import einops
17
  import copy
 
18
  import time
19
- import torch.quantization # 追加
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  parser = argparse.ArgumentParser()
22
  parser.add_argument("--opt", type=str, default='options/SUPIR_v0.yaml')
23
  parser.add_argument("--ip", type=str, default='127.0.0.1')
24
  parser.add_argument("--port", type=int, default='6688')
25
- parser.add_argument("--no_llava", action='store_true', default=False)
26
- parser.add_argument("--use_image_slider", action='store_true', default=False)
27
  parser.add_argument("--log_history", action='store_true', default=False)
28
- parser.add_argument("--loading_half_params", action='store_true', default=True)
29
- parser.add_argument("--use_tile_vae", action='store_true', default=True)
30
- parser.add_argument("--encoder_tile_size", type=int, default=256) # タイルサイズを小さく調整
31
  parser.add_argument("--decoder_tile_size", type=int, default=64)
32
  parser.add_argument("--load_8bit_llava", action='store_true', default=True)
33
  args = parser.parse_args()
34
- server_ip = args.ip
35
- server_port = args.port
36
- use_llava = not args.no_llava
37
 
38
- if torch.cuda.device_count() >= 2:
39
- SUPIR_device = 'cuda:0'
40
- LLaVA_device = 'cuda:1'
41
- elif torch.cuda.device_count() == 1:
42
  SUPIR_device = 'cuda:0'
43
- LLaVA_device = 'cuda:0'
44
- else:
45
- raise ValueError('Currently support CUDA only.')
46
-
47
- # load SUPIR
48
- model, default_setting = create_SUPIR_model(args.opt, SUPIR_sign='Q', load_default_setting=True)
49
- if args.loading_half_params:
50
- model = model.half()
51
- if args.use_tile_vae:
52
- model.init_tile_vae(encoder_tile_size=args.encoder_tile_size, decoder_tile_size=args.decoder_tile_size)
53
- model = model.to(SUPIR_device)
54
- model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder)
55
- model.current_model = 'v0-Q'
56
- ckpt_Q, ckpt_F = load_QF_ckpt(args.opt)
57
-
58
- # モデルの量子化を追加
59
- def quantize_model(model):
60
- model.eval()
61
- model_int8 = torch.quantization.quantize_dynamic(
62
- model, {torch.nn.Linear, torch.nn.Conv2d}, dtype=torch.qint8
63
- )
64
- return model_int8
65
 
66
- model = quantize_model(model) # モデルを量子化
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
- # load LLaVA
69
- if use_llava:
70
- llava_agent = LLavaAgent(LLAVA_MODEL_PATH, device=LLaVA_device, load_8bit=args.load_8bit_llava, load_4bit=False)
71
- else:
72
- llava_agent = None
73
 
74
- @GPU(duration=15) # GPUを利用する関数にデコレーターを追加
75
- @torch.no_grad()
76
- def stage1_process(input_image, gamma_correction):
 
 
 
 
 
 
 
 
77
  torch.cuda.set_device(SUPIR_device)
78
- with autocast(): # AMPを使用
79
- LQ = HWC3(input_image)
80
- LQ = fix_resize(LQ, 512)
81
- # stage1
82
- LQ = np.array(LQ) / 255 * 2 - 1
83
- LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
84
- LQ = model.batchify_denoise(LQ, is_stage1=True)
85
- LQ = (LQ[0].permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().round().clip(0, 255).astype(np.uint8)
86
- # gamma correction
87
- LQ = LQ / 255.0
88
- LQ = np.power(LQ, gamma_correction)
89
- LQ *= 255.0
90
- LQ = LQ.round().clip(0, 255).astype(np.uint8)
91
- torch.cuda.empty_cache() # メモリを解放
92
- return LQ
93
-
94
- @GPU(duration=15) # GPUを利用する関数にデコレーターを追加
95
- @torch.no_grad()
96
- def llave_process(input_image, temperature, top_p, qs=None):
97
- torch.cuda.set_device(LLaVA_device)
98
- with autocast(): # AMPを使用
99
- if use_llava:
100
- LQ = HWC3(input_image)
101
- LQ = Image.fromarray(LQ.astype('uint8'))
102
- captions = llava_agent.gen_image_caption([LQ], temperature=temperature, top_p=top_p, qs=qs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
  else:
104
- captions = ['LLaVA is not available. Please add text manually.']
105
- torch.cuda.empty_cache() # メモリを解放
106
- return captions[0]
107
-
108
- @GPU(duration=50) # GPUを利用する関数にデコレーターを追加
109
- @torch.no_grad()
110
- def stage2_process(input_image, prompt, a_prompt, n_prompt, num_samples, upscale, edm_steps, s_stage1, s_stage2,
111
- s_cfg, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction,
112
- linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select):
113
- torch.cuda.set_device(SUPIR_device)
114
- event_id = str(time.time_ns())
115
- event_dict = {'event_id': event_id, 'localtime': time.ctime(), 'prompt': prompt, 'a_prompt': a_prompt,
116
- 'n_prompt': n_prompt, 'num_samples': num_samples, 'upscale': upscale, 'edm_steps': edm_steps,
117
- 's_stage1': s_stage1, 's_stage2': s_stage2, 's_cfg': s_cfg, 'seed': seed, 's_churn': s_churn,
118
- 's_noise': s_noise, 'color_fix_type': color_fix_type, 'diff_dtype': diff_dtype, 'ae_dtype': ae_dtype,
119
- 'gamma_correction': gamma_correction, 'linear_CFG': linear_CFG, 'linear_s_stage2': linear_s_stage2,
120
- 'spt_linear_CFG': spt_linear_CFG, 'spt_linear_s_stage2': spt_linear_s_stage2,
121
- 'model_select': model_select}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
 
123
  if model_select != model.current_model:
 
124
  if model_select == 'v0-Q':
125
- print('load v0-Q')
126
  model.load_state_dict(ckpt_Q, strict=False)
127
- model.current_model = 'v0-Q'
128
  elif model_select == 'v0-F':
129
- print('load v0-F')
130
  model.load_state_dict(ckpt_F, strict=False)
131
- model.current_model = 'v0-F'
132
- with autocast(): # AMPを使用
133
- input_image = HWC3(input_image)
134
- input_image = upscale_image(input_image, upscale, unit_resolution=32,
135
- min_size=1024)
136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
  LQ = np.array(input_image) / 255.0
138
  LQ = np.power(LQ, gamma_correction)
139
  LQ *= 255.0
140
  LQ = LQ.round().clip(0, 255).astype(np.uint8)
141
  LQ = LQ / 255 * 2 - 1
142
  LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
143
- if use_llava:
144
- captions = [prompt]
145
- else:
146
- captions = ['']
147
-
148
- model.ae_dtype = convert_dtype(ae_dtype)
149
- model.model.dtype = convert_dtype(diff_dtype)
150
 
151
  samples = model.batchify_sample(LQ, captions, num_steps=edm_steps, restoration_scale=s_stage1, s_churn=s_churn,
152
- s_noise=s_noise, cfg_scale=s_cfg, control_scale=s_stage2, seed=seed,
153
- num_samples=num_samples, p_p=a_prompt, n_p=n_prompt, color_fix_type=color_fix_type,
154
- use_linear_CFG=linear_CFG, use_linear_control_scale=linear_s_stage2,
155
- cfg_scale_start=spt_linear_CFG, control_scale_start=spt_linear_s_stage2)
156
 
157
  x_samples = (einops.rearrange(samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().round().clip(
158
  0, 255).astype(np.uint8)
159
  results = [x_samples[i] for i in range(num_samples)]
 
160
 
161
- if args.log_history:
162
- os.makedirs(f'./history/{event_id[:5]}/{event_id[5:]}', exist_ok=True)
163
- with open(f'./history/{event_id[:5]}/{event_id[5:]}/logs.txt', 'w') as f:
164
- f.write(str(event_dict))
165
- Image.fromarray(input_image).save(f'./history/{event_id[:5]}/{event_id[5:]}/LQ.png')
166
- for i, result in enumerate(results):
167
- Image.fromarray(result).save(f'./history/{event_id[:5]}/{event_id[5:]}/HQ_{i}.png')
168
- torch.cuda.empty_cache() # メモリを解放
169
- return [input_image] + results, event_id, 3, ''
170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
 
172
  def load_and_reset(param_setting):
 
 
 
 
173
  edm_steps = default_setting.edm_steps
174
  s_stage2 = 1.0
175
  s_stage1 = -1.0
@@ -178,7 +458,7 @@ def load_and_reset(param_setting):
178
  a_prompt = 'Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - ' \
179
  'realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore ' \
180
  'detailing, hyper sharpness, perfect without deformations.'
181
- n_prompt = 'painting, oil painting, illustration, drawing, art, sketch, oil painting, cartoon, CG Style, ' \
182
  '3D render, unreal engine, blurring, dirty, messy, worst quality, low quality, frames, watermark, ' \
183
  'signature, jpeg artifacts, deformed, lowres, over-smooth'
184
  color_fix_type = 'Wavelet'
@@ -188,146 +468,440 @@ def load_and_reset(param_setting):
188
  if param_setting == "Quality":
189
  s_cfg = default_setting.s_cfg_Quality
190
  spt_linear_CFG = default_setting.spt_linear_CFG_Quality
 
191
  elif param_setting == "Fidelity":
192
  s_cfg = default_setting.s_cfg_Fidelity
193
  spt_linear_CFG = default_setting.spt_linear_CFG_Fidelity
 
194
  else:
195
  raise NotImplementedError
 
 
196
  return edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, \
197
- linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2
198
 
 
 
 
 
 
199
 
200
- def submit_feedback(event_id, fb_score, fb_text):
201
- if args.log_history:
202
- with open(f'./history/{event_id[:5]}/{event_id[5:]}/logs.txt', 'r') as f:
203
- event_dict = eval(f.read())
204
- event_dict['feedback'] = {'score': fb_score, 'text': fb_text}
205
- with open(f'./history/{event_id[:5]}/{event_id[5:]}/logs.txt', 'w') as f:
206
- f.write(str(event_dict))
207
- return 'Submit successfully, thank you for your comments!'
208
- else:
209
- return 'Submit failed, the server is not set to log history.'
210
 
211
-
212
- title_md = """
213
- # **SUPIR: Practicing Model Scaling for Photo-Realistic Image Restoration**
214
- ⚠️SUPIR is still a research project under tested and is not yet a stable commercial product.
215
- [[Paper](https://arxiv.org/abs/2401.13627)]   [[Project Page](http://supir.xpixel.group/)]   [[How to play](https://github.com/Fanghua-Yu/SUPIR/blob/master/assets/DemoGuide.png)]
216
- """
 
 
 
 
 
 
 
 
 
 
 
217
 
218
 
219
  claim_md = """
 
 
 
 
 
 
220
  ## **Terms of use**
221
  By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. Please submit a feedback to us if you get any inappropriate answer! We will collect those to keep improving our models. For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
222
  ## **License**
223
  The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/Fanghua-Yu/SUPIR) of SUPIR.
224
  """
225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226
 
227
- block = gr.Blocks(title='SUPIR').queue()
228
- with block:
229
- with gr.Row():
230
- gr.Markdown(title_md)
231
- with gr.Row():
232
- with gr.Column():
233
- with gr.Row(equal_height=True):
234
- with gr.Column():
235
- gr.Markdown("<center>Input</center>")
236
- input_image = gr.Image(type="numpy", elem_id="image-input", height=400, width=400)
237
- with gr.Column():
238
- gr.Markdown("<center>Stage1 Output</center>")
239
- denoise_image = gr.Image(type="numpy", elem_id="image-s1", height=400, width=400)
240
- prompt = gr.Textbox(label="Prompt", value="")
241
- with gr.Accordion("Stage1 options", open=False):
242
- gamma_correction = gr.Slider(label="Gamma Correction", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
243
- with gr.Accordion("LLaVA options", open=False):
244
- temperature = gr.Slider(label="Temperature", minimum=0., maximum=1.0, value=0.2, step=0.1)
245
- top_p = gr.Slider(label="Top P", minimum=0., maximum=1.0, value=0.7, step=0.1)
246
- qs = gr.Textbox(label="Question", value="Describe this image and its style in a very detailed manner. "
247
- "The image is a realistic photography, not an art painting.")
248
- with gr.Accordion("Stage2 options", open=False):
249
- num_samples = gr.Slider(label="Num Samples", minimum=1, maximum=4 if not args.use_image_slider else 1
250
- , value=1, step=1)
251
- upscale = gr.Slider(label="Upscale", minimum=1, maximum=8, value=1, step=1)
252
- edm_steps = gr.Slider(label="Steps", minimum=1, maximum=200, value=default_setting.edm_steps, step=1)
253
- s_cfg = gr.Slider(label="Text Guidance Scale", minimum=1.0, maximum=15.0,
254
- value=default_setting.s_cfg_Quality, step=0.1)
255
- s_stage2 = gr.Slider(label="Stage2 Guidance Strength", minimum=0., maximum=1., value=1., step=0.05)
256
- s_stage1 = gr.Slider(label="Stage1 Guidance Strength", minimum=-1.0, maximum=6.0, value=-1.0, step=1.0)
257
- seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
258
- s_churn = gr.Slider(label="S-Churn", minimum=0, maximum=40, value=5, step=1)
259
- s_noise = gr.Slider(label="S-Noise", minimum=1.0, maximum=1.1, value=1.003, step=0.001)
260
- a_prompt = gr.Textbox(label="Default Positive Prompt",
261
- value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R '
262
- 'camera, hyper detailed photo - realistic maximum detail, 32k, Color '
263
- 'Grading, ultra HD, extreme meticulous detailing, skin pore detailing, '
264
- 'hyper sharpness, perfect without deformations.')
265
- n_prompt = gr.Textbox(label="Default Negative Prompt",
266
- value='painting, oil painting, illustration, drawing, art, sketch, oil painting, '
267
- 'cartoon, CG Style, 3D render, unreal engine, blurring, dirty, messy, '
268
- 'worst quality, low quality, frames, watermark, signature, jpeg artifacts, '
269
- 'deformed, lowres, over-smooth')
270
- with gr.Row():
271
- with gr.Column():
272
- linear_CFG = gr.Checkbox(label="Linear CFG", value=True)
273
- spt_linear_CFG = gr.Slider(label="CFG Start", minimum=1.0,
274
- maximum=9.0, value=default_setting.spt_linear_CFG_Quality, step=0.5)
275
- with gr.Column():
276
- linear_s_stage2 = gr.Checkbox(label="Linear Stage2 Guidance", value=False)
277
- spt_linear_s_stage2 = gr.Slider(label="Guidance Start", minimum=0.,
278
- maximum=1., value=0., step=0.05)
279
- with gr.Row():
280
- with gr.Column():
281
- diff_dtype = gr.Radio(['fp32', 'fp16', 'bf16'], label="Diffusion Data Type", value="fp16",
282
- interactive=True)
283
- with gr.Column():
284
- ae_dtype = gr.Radio(['fp32', 'bf16'], label="Auto-Encoder Data Type", value="bf16",
285
- interactive=True)
286
- with gr.Column():
287
- color_fix_type = gr.Radio(["None", "AdaIn", "Wavelet"], label="Color-Fix Type", value="Wavelet",
288
- interactive=True)
289
- with gr.Column():
290
- model_select = gr.Radio(["v0-Q", "v0-F"], label="Model Selection", value="v0-Q",
291
- interactive=True)
292
-
293
- with gr.Column():
294
- gr.Markdown("<center>Stage2 Output</center>")
295
- if not args.use_image_slider:
296
- result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery1")
297
- else:
298
- result_gallery = ImageSlider(label='Output', show_label=False, elem_id="gallery1")
299
- with gr.Row():
300
- with gr.Column():
301
- denoise_button = gr.Button(value="Stage1 Run")
302
- with gr.Column():
303
- llave_button = gr.Button(value="LlaVa Run")
304
- with gr.Column():
305
- diffusion_button = gr.Button(value="Stage2 Run")
306
- with gr.Row():
307
- with gr.Column():
308
- param_setting = gr.Dropdown(["Quality", "Fidelity"], interactive=True, label="Param Setting",
309
- value="Quality")
310
- with gr.Column():
311
- restart_button = gr.Button(value="Reset Param", scale=2)
312
- with gr.Accordion("Feedback", open=True):
313
- fb_score = gr.Slider(label="Feedback Score", minimum=1, maximum=5, value=3, step=1,
314
- interactive=True)
315
- fb_text = gr.Textbox(label="Feedback Text", value="", placeholder='Please enter your feedback here.')
316
- submit_button = gr.Button(value="Submit Feedback")
317
  with gr.Row():
318
  gr.Markdown(claim_md)
319
- event_id = gr.Textbox(label="Event ID", value="", visible=False)
320
-
321
- llave_button.click(fn=llave_process, inputs=[denoise_image, temperature, top_p, qs], outputs=[prompt])
322
- denoise_button.click(fn=stage1_process, inputs=[input_image, gamma_correction],
323
- outputs=[denoise_image])
324
- stage2_ips = [input_image, prompt, a_prompt, n_prompt, num_samples, upscale, edm_steps, s_stage1, s_stage2,
325
- s_cfg, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction,
326
- linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select]
327
- diffusion_button.click(fn=stage2_process, inputs=stage2_ips, outputs=[result_gallery, event_id, fb_score, fb_text])
328
- restart_button.click(fn=load_and_reset, inputs=[param_setting],
329
- outputs=[edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt,
330
- color_fix_type, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2])
331
- submit_button.click(fn=submit_feedback, inputs=[event_id, fb_score, fb_text], outputs=[fb_text])
332
- # block.launch(share=True, server_name=server_ip, server_port=server_port)
333
- block.launch(share=True, server_name=server_ip, server_port=7860)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
 
2
  import gradio as gr
 
3
  import argparse
 
4
  import numpy as np
5
  import torch
 
 
 
 
 
6
  import einops
7
  import copy
8
+ import math
9
  import time
10
+ import random
11
+ import spaces
12
+ import re
13
+ import uuid
14
+
15
+ from gradio_imageslider import ImageSlider
16
+ from PIL import Image
17
+ from SUPIR.util import HWC3, upscale_image, fix_resize, convert_dtype, create_SUPIR_model, load_QF_ckpt
18
+ from huggingface_hub import hf_hub_download
19
+ from pillow_heif import register_heif_opener
20
+
21
+ register_heif_opener()
22
+
23
+ max_64_bit_int = np.iinfo(np.int32).max
24
+
25
+ hf_hub_download(repo_id="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", filename="open_clip_pytorch_model.bin", local_dir="laion_CLIP-ViT-bigG-14-laion2B-39B-b160k")
26
+ hf_hub_download(repo_id="camenduru/SUPIR", filename="sd_xl_base_1.0_0.9vae.safetensors", local_dir="yushan777_SUPIR")
27
+ hf_hub_download(repo_id="camenduru/SUPIR", filename="SUPIR-v0F.ckpt", local_dir="yushan777_SUPIR")
28
+ hf_hub_download(repo_id="camenduru/SUPIR", filename="SUPIR-v0Q.ckpt", local_dir="yushan777_SUPIR")
29
+ hf_hub_download(repo_id="RunDiffusion/Juggernaut-XL-Lightning", filename="Juggernaut_RunDiffusionPhoto2_Lightning_4Steps.safetensors", local_dir="RunDiffusion_Juggernaut-XL-Lightning")
30
 
31
  parser = argparse.ArgumentParser()
32
  parser.add_argument("--opt", type=str, default='options/SUPIR_v0.yaml')
33
  parser.add_argument("--ip", type=str, default='127.0.0.1')
34
  parser.add_argument("--port", type=int, default='6688')
35
+ parser.add_argument("--no_llava", action='store_true', default=True)#False
36
+ parser.add_argument("--use_image_slider", action='store_true', default=False)#False
37
  parser.add_argument("--log_history", action='store_true', default=False)
38
+ parser.add_argument("--loading_half_params", action='store_true', default=True)#False
39
+ parser.add_argument("--use_tile_vae", action='store_true', default=False)#False
40
+ parser.add_argument("--encoder_tile_size", type=int, default=512)
41
  parser.add_argument("--decoder_tile_size", type=int, default=64)
42
  parser.add_argument("--load_8bit_llava", action='store_true', default=True)
43
  args = parser.parse_args()
 
 
 
44
 
45
+ if torch.cuda.device_count() > 0:
 
 
 
46
  SUPIR_device = 'cuda:0'
47
+
48
+ # Load SUPIR
49
+ model, default_setting = create_SUPIR_model(args.opt, SUPIR_sign='Q', load_default_setting=True)
50
+ if args.loading_half_params:
51
+ model = model.half()
52
+ if args.use_tile_vae:
53
+ model.init_tile_vae(encoder_tile_size=args.encoder_tile_size, decoder_tile_size=args.decoder_tile_size)
54
+ model = model.to(SUPIR_device)
55
+ model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder)
56
+ model.current_model = 'v0-Q'
57
+ ckpt_Q, ckpt_F = load_QF_ckpt(args.opt)
58
+
59
+ def check_upload(input_image):
60
+ if input_image is None:
61
+ raise gr.Error("Please provide an image to restore.")
62
+ return gr.update(visible = True)
63
+
64
+ def update_seed(is_randomize_seed, seed):
65
+ if is_randomize_seed:
66
+ return random.randint(0, max_64_bit_int)
67
+ return seed
 
68
 
69
+ def reset():
70
+ return [
71
+ None,
72
+ 0,
73
+ None,
74
+ None,
75
+ "Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
76
+ "painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth",
77
+ 1,
78
+ 1024,
79
+ 1,
80
+ 2,
81
+ 50,
82
+ -1.0,
83
+ 1.,
84
+ default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0,
85
+ True,
86
+ random.randint(0, max_64_bit_int),
87
+ 5,
88
+ 1.003,
89
+ "Wavelet",
90
+ "fp32",
91
+ "fp32",
92
+ 1.0,
93
+ True,
94
+ False,
95
+ default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0,
96
+ 0.,
97
+ "v0-Q",
98
+ "input",
99
+ 6
100
+ ]
101
 
102
+ def check(input_image):
103
+ if input_image is None:
104
+ raise gr.Error("Please provide an image to restore.")
 
 
105
 
106
+ @spaces.GPU(duration=420)
107
+ def stage1_process(
108
+ input_image,
109
+ gamma_correction,
110
+ diff_dtype,
111
+ ae_dtype
112
+ ):
113
+ print('stage1_process ==>>')
114
+ if torch.cuda.device_count() == 0:
115
+ gr.Warning('Set this space to GPU config to make it work.')
116
+ return None, None
117
  torch.cuda.set_device(SUPIR_device)
118
+ LQ = HWC3(np.array(Image.open(input_image)))
119
+ LQ = fix_resize(LQ, 512)
120
+ # stage1
121
+ LQ = np.array(LQ) / 255 * 2 - 1
122
+ LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
123
+
124
+ model.ae_dtype = convert_dtype(ae_dtype)
125
+ model.model.dtype = convert_dtype(diff_dtype)
126
+
127
+ LQ = model.batchify_denoise(LQ, is_stage1=True)
128
+ LQ = (LQ[0].permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().round().clip(0, 255).astype(np.uint8)
129
+ # gamma correction
130
+ LQ = LQ / 255.0
131
+ LQ = np.power(LQ, gamma_correction)
132
+ LQ *= 255.0
133
+ LQ = LQ.round().clip(0, 255).astype(np.uint8)
134
+ print('<<== stage1_process')
135
+ return LQ, gr.update(visible = True)
136
+
137
+ def stage2_process(*args, **kwargs):
138
+ try:
139
+ return restore_in_Xmin(*args, **kwargs)
140
+ except Exception as e:
141
+ # NO_GPU_MESSAGE_INQUEUE
142
+ print("gradio.exceptions.Error 'No GPU is currently available for you after 60s'")
143
+ print('str(type(e)): ' + str(type(e))) # <class 'gradio.exceptions.Error'>
144
+ print('str(e): ' + str(e)) # You have exceeded your GPU quota...
145
+ try:
146
+ print('e.message: ' + e.message) # No GPU is currently available for you after 60s
147
+ except Exception as e2:
148
+ print('Failure')
149
+ if str(e).startswith("No GPU is currently available for you after 60s"):
150
+ print('Exception identified!!!')
151
+ #if str(type(e)) == "<class 'gradio.exceptions.Error'>":
152
+ #print('Exception of name ' + type(e).__name__)
153
+ raise e
154
+
155
+ def restore_in_Xmin(
156
+ noisy_image,
157
+ rotation,
158
+ denoise_image,
159
+ prompt,
160
+ a_prompt,
161
+ n_prompt,
162
+ num_samples,
163
+ min_size,
164
+ downscale,
165
+ upscale,
166
+ edm_steps,
167
+ s_stage1,
168
+ s_stage2,
169
+ s_cfg,
170
+ randomize_seed,
171
+ seed,
172
+ s_churn,
173
+ s_noise,
174
+ color_fix_type,
175
+ diff_dtype,
176
+ ae_dtype,
177
+ gamma_correction,
178
+ linear_CFG,
179
+ linear_s_stage2,
180
+ spt_linear_CFG,
181
+ spt_linear_s_stage2,
182
+ model_select,
183
+ output_format,
184
+ allocation
185
+ ):
186
+ print("noisy_image:\n" + str(noisy_image))
187
+ print("denoise_image:\n" + str(denoise_image))
188
+ print("rotation: " + str(rotation))
189
+ print("prompt: " + str(prompt))
190
+ print("a_prompt: " + str(a_prompt))
191
+ print("n_prompt: " + str(n_prompt))
192
+ print("num_samples: " + str(num_samples))
193
+ print("min_size: " + str(min_size))
194
+ print("downscale: " + str(downscale))
195
+ print("upscale: " + str(upscale))
196
+ print("edm_steps: " + str(edm_steps))
197
+ print("s_stage1: " + str(s_stage1))
198
+ print("s_stage2: " + str(s_stage2))
199
+ print("s_cfg: " + str(s_cfg))
200
+ print("randomize_seed: " + str(randomize_seed))
201
+ print("seed: " + str(seed))
202
+ print("s_churn: " + str(s_churn))
203
+ print("s_noise: " + str(s_noise))
204
+ print("color_fix_type: " + str(color_fix_type))
205
+ print("diff_dtype: " + str(diff_dtype))
206
+ print("ae_dtype: " + str(ae_dtype))
207
+ print("gamma_correction: " + str(gamma_correction))
208
+ print("linear_CFG: " + str(linear_CFG))
209
+ print("linear_s_stage2: " + str(linear_s_stage2))
210
+ print("spt_linear_CFG: " + str(spt_linear_CFG))
211
+ print("spt_linear_s_stage2: " + str(spt_linear_s_stage2))
212
+ print("model_select: " + str(model_select))
213
+ print("GPU time allocation: " + str(allocation) + " min")
214
+ print("output_format: " + str(output_format))
215
+
216
+ input_format = re.sub(r"^.*\.([^\.]+)$", r"\1", noisy_image)
217
+
218
+ if input_format not in ['png', 'webp', 'jpg', 'jpeg', 'gif', 'bmp', 'heic']:
219
+ gr.Warning('Invalid image format. Please first convert into *.png, *.webp, *.jpg, *.jpeg, *.gif, *.bmp or *.heic.')
220
+ return None, None, None, None
221
+
222
+ if output_format == "input":
223
+ if noisy_image is None:
224
+ output_format = "png"
225
  else:
226
+ output_format = input_format
227
+ print("final output_format: " + str(output_format))
228
+
229
+ if prompt is None:
230
+ prompt = ""
231
+
232
+ if a_prompt is None:
233
+ a_prompt = ""
234
+
235
+ if n_prompt is None:
236
+ n_prompt = ""
237
+
238
+ if prompt != "" and a_prompt != "":
239
+ a_prompt = prompt + ", " + a_prompt
240
+ else:
241
+ a_prompt = prompt + a_prompt
242
+ print("Final prompt: " + str(a_prompt))
243
+
244
+ denoise_image = np.array(Image.open(noisy_image if denoise_image is None else denoise_image))
245
+
246
+ if rotation == 90:
247
+ denoise_image = np.array(list(zip(*denoise_image[::-1])))
248
+ elif rotation == 180:
249
+ denoise_image = np.array(list(zip(*denoise_image[::-1])))
250
+ denoise_image = np.array(list(zip(*denoise_image[::-1])))
251
+ elif rotation == -90:
252
+ denoise_image = np.array(list(zip(*denoise_image))[::-1])
253
+
254
+ if 1 < downscale:
255
+ input_height, input_width, input_channel = denoise_image.shape
256
+ denoise_image = np.array(Image.fromarray(denoise_image).resize((input_width // downscale, input_height // downscale), Image.LANCZOS))
257
+
258
+ denoise_image = HWC3(denoise_image)
259
+
260
+ if torch.cuda.device_count() == 0:
261
+ gr.Warning('Set this space to GPU config to make it work.')
262
+ return [noisy_image, denoise_image], gr.update(label="Downloadable results in *." + output_format + " format", format = output_format, value = [denoise_image]), None, gr.update(visible=True)
263
 
264
  if model_select != model.current_model:
265
+ print('load ' + model_select)
266
  if model_select == 'v0-Q':
 
267
  model.load_state_dict(ckpt_Q, strict=False)
 
268
  elif model_select == 'v0-F':
 
269
  model.load_state_dict(ckpt_F, strict=False)
270
+ model.current_model = model_select
 
 
 
 
271
 
272
+ model.ae_dtype = convert_dtype(ae_dtype)
273
+ model.model.dtype = convert_dtype(diff_dtype)
274
+
275
+ # Allocation
276
+ if allocation == 1:
277
+ return restore_in_1min(
278
+ noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
279
+ )
280
+ if allocation == 2:
281
+ return restore_in_2min(
282
+ noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
283
+ )
284
+ if allocation == 3:
285
+ return restore_in_3min(
286
+ noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
287
+ )
288
+ if allocation == 4:
289
+ return restore_in_4min(
290
+ noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
291
+ )
292
+ if allocation == 5:
293
+ return restore_in_5min(
294
+ noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
295
+ )
296
+ if allocation == 7:
297
+ return restore_in_7min(
298
+ noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
299
+ )
300
+ if allocation == 8:
301
+ return restore_in_8min(
302
+ noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
303
+ )
304
+ if allocation == 9:
305
+ return restore_in_9min(
306
+ noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
307
+ )
308
+ if allocation == 10:
309
+ return restore_in_10min(
310
+ noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
311
+ )
312
+ else:
313
+ return restore_in_6min(
314
+ noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
315
+ )
316
+
317
+ @spaces.GPU(duration=59)
318
+ def restore_in_1min(*args, **kwargs):
319
+ return restore_on_gpu(*args, **kwargs)
320
+
321
+ @spaces.GPU(duration=119)
322
+ def restore_in_2min(*args, **kwargs):
323
+ return restore_on_gpu(*args, **kwargs)
324
+
325
+ @spaces.GPU(duration=179)
326
+ def restore_in_3min(*args, **kwargs):
327
+ return restore_on_gpu(*args, **kwargs)
328
+
329
+ @spaces.GPU(duration=239)
330
+ def restore_in_4min(*args, **kwargs):
331
+ return restore_on_gpu(*args, **kwargs)
332
+
333
+ @spaces.GPU(duration=299)
334
+ def restore_in_5min(*args, **kwargs):
335
+ return restore_on_gpu(*args, **kwargs)
336
+
337
+ @spaces.GPU(duration=359)
338
+ def restore_in_6min(*args, **kwargs):
339
+ return restore_on_gpu(*args, **kwargs)
340
+
341
+ @spaces.GPU(duration=419)
342
+ def restore_in_7min(*args, **kwargs):
343
+ return restore_on_gpu(*args, **kwargs)
344
+
345
+ @spaces.GPU(duration=479)
346
+ def restore_in_8min(*args, **kwargs):
347
+ return restore_on_gpu(*args, **kwargs)
348
+
349
+ @spaces.GPU(duration=539)
350
+ def restore_in_9min(*args, **kwargs):
351
+ return restore_on_gpu(*args, **kwargs)
352
+
353
+ @spaces.GPU(duration=599)
354
+ def restore_in_10min(*args, **kwargs):
355
+ return restore_on_gpu(*args, **kwargs)
356
+
357
+ def restore_on_gpu(
358
+ noisy_image,
359
+ input_image,
360
+ prompt,
361
+ a_prompt,
362
+ n_prompt,
363
+ num_samples,
364
+ min_size,
365
+ downscale,
366
+ upscale,
367
+ edm_steps,
368
+ s_stage1,
369
+ s_stage2,
370
+ s_cfg,
371
+ randomize_seed,
372
+ seed,
373
+ s_churn,
374
+ s_noise,
375
+ color_fix_type,
376
+ diff_dtype,
377
+ ae_dtype,
378
+ gamma_correction,
379
+ linear_CFG,
380
+ linear_s_stage2,
381
+ spt_linear_CFG,
382
+ spt_linear_s_stage2,
383
+ model_select,
384
+ output_format,
385
+ allocation
386
+ ):
387
+ start = time.time()
388
+ print('restore ==>>')
389
+
390
+ torch.cuda.set_device(SUPIR_device)
391
+
392
+ with torch.no_grad():
393
+ input_image = upscale_image(input_image, upscale, unit_resolution=32, min_size=min_size)
394
  LQ = np.array(input_image) / 255.0
395
  LQ = np.power(LQ, gamma_correction)
396
  LQ *= 255.0
397
  LQ = LQ.round().clip(0, 255).astype(np.uint8)
398
  LQ = LQ / 255 * 2 - 1
399
  LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
400
+ captions = ['']
 
 
 
 
 
 
401
 
402
  samples = model.batchify_sample(LQ, captions, num_steps=edm_steps, restoration_scale=s_stage1, s_churn=s_churn,
403
+ s_noise=s_noise, cfg_scale=s_cfg, control_scale=s_stage2, seed=seed,
404
+ num_samples=num_samples, p_p=a_prompt, n_p=n_prompt, color_fix_type=color_fix_type,
405
+ use_linear_CFG=linear_CFG, use_linear_control_scale=linear_s_stage2,
406
+ cfg_scale_start=spt_linear_CFG, control_scale_start=spt_linear_s_stage2)
407
 
408
  x_samples = (einops.rearrange(samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().round().clip(
409
  0, 255).astype(np.uint8)
410
  results = [x_samples[i] for i in range(num_samples)]
411
+ torch.cuda.empty_cache()
412
 
413
+ # All the results have the same size
414
+ input_height, input_width, input_channel = np.array(input_image).shape
415
+ result_height, result_width, result_channel = np.array(results[0]).shape
 
 
 
 
 
 
416
 
417
+ print('<<== restore')
418
+ end = time.time()
419
+ secondes = int(end - start)
420
+ minutes = math.floor(secondes / 60)
421
+ secondes = secondes - (minutes * 60)
422
+ hours = math.floor(minutes / 60)
423
+ minutes = minutes - (hours * 60)
424
+ information = ("Start the process again if you want a different result. " if randomize_seed else "") + \
425
+ "If you don't get the image you wanted, add more details in the « Image description ». " + \
426
+ "Wait " + str(allocation) + " min before a new run to avoid quota penalty or use another computer. " + \
427
+ "The image" + (" has" if len(results) == 1 else "s have") + " been generated in " + \
428
+ ((str(hours) + " h, ") if hours != 0 else "") + \
429
+ ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \
430
+ str(secondes) + " sec. " + \
431
+ "The new image resolution is " + str(result_width) + \
432
+ " pixels large and " + str(result_height) + \
433
+ " pixels high, so a resolution of " + f'{result_width * result_height:,}' + " pixels."
434
+ print(information)
435
+ try:
436
+ print("Initial resolution: " + f'{input_width * input_height:,}')
437
+ print("Final resolution: " + f'{result_width * result_height:,}')
438
+ print("edm_steps: " + str(edm_steps))
439
+ print("num_samples: " + str(num_samples))
440
+ print("downscale: " + str(downscale))
441
+ print("Estimated minutes: " + f'{(((result_width * result_height**(1/1.75)) * input_width * input_height * (edm_steps**(1/2)) * (num_samples**(1/2.5)))**(1/2.5)) / 25000:,}')
442
+ except Exception as e:
443
+ print('Exception of Estimation')
444
+
445
+ # Only one image can be shown in the slider
446
+ return [noisy_image] + [results[0]], gr.update(label="Downloadable results in *." + output_format + " format", format = output_format, value = results), gr.update(value = information, visible = True), gr.update(visible=True)
447
 
448
  def load_and_reset(param_setting):
449
+ print('load_and_reset ==>>')
450
+ if torch.cuda.device_count() == 0:
451
+ gr.Warning('Set this space to GPU config to make it work.')
452
+ return None, None, None, None, None, None, None, None, None, None, None, None, None, None
453
  edm_steps = default_setting.edm_steps
454
  s_stage2 = 1.0
455
  s_stage1 = -1.0
 
458
  a_prompt = 'Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - ' \
459
  'realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore ' \
460
  'detailing, hyper sharpness, perfect without deformations.'
461
+ n_prompt = 'painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, ' \
462
  '3D render, unreal engine, blurring, dirty, messy, worst quality, low quality, frames, watermark, ' \
463
  'signature, jpeg artifacts, deformed, lowres, over-smooth'
464
  color_fix_type = 'Wavelet'
 
468
  if param_setting == "Quality":
469
  s_cfg = default_setting.s_cfg_Quality
470
  spt_linear_CFG = default_setting.spt_linear_CFG_Quality
471
+ model_select = "v0-Q"
472
  elif param_setting == "Fidelity":
473
  s_cfg = default_setting.s_cfg_Fidelity
474
  spt_linear_CFG = default_setting.spt_linear_CFG_Fidelity
475
+ model_select = "v0-F"
476
  else:
477
  raise NotImplementedError
478
+ gr.Info('The parameters are reset.')
479
+ print('<<== load_and_reset')
480
  return edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, \
481
+ linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select
482
 
483
+ def log_information(result_gallery):
484
+ print('log_information')
485
+ if result_gallery is not None:
486
+ for i, result in enumerate(result_gallery):
487
+ print(result[0])
488
 
489
+ def on_select_result(result_slider, result_gallery, evt: gr.SelectData):
490
+ print('on_select_result')
491
+ if result_gallery is not None:
492
+ for i, result in enumerate(result_gallery):
493
+ print(result[0])
494
+ return [result_slider[0], result_gallery[evt.index][0]]
 
 
 
 
495
 
496
+ title_html = """
497
+ <h1><center>SUPIR</center></h1>
498
+ <big><center>Upscale your images up to x10 freely, without account, without watermark and download it</center></big>
499
+ <center><big><big>🤸<big><big><big><big><big><big>🤸</big></big></big></big></big></big></big></big></center>
500
+
501
+ <p>This is an online demo of SUPIR, a practicing model scaling for photo-realistic image restoration.
502
+ The content added by SUPIR is <b><u>imagination, not real-world information</u></b>.
503
+ SUPIR is for beauty and illustration only.
504
+ Most of the processes last few minutes.
505
+ If you want to upscale AI-generated images, be noticed that <i>PixArt Sigma</i> space can directly generate 5984x5984 images.
506
+ Due to Gradio issues, the generated image is slightly less satured than the original.
507
+ Please leave a <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR/discussions/new">message in discussion</a> if you encounter issues.
508
+ You can also use <a href="https://huggingface.co/spaces/gokaygokay/AuraSR">AuraSR</a> to upscale x4.
509
+
510
+ <p><center><a href="https://arxiv.org/abs/2401.13627">Paper</a> &emsp; <a href="http://supir.xpixel.group/">Project Page</a> &emsp; <a href="https://huggingface.co/blog/MonsterMMORPG/supir-sota-image-upscale-better-than-magnific-ai">Local Install Guide</a></center></p>
511
+ <p><center><a style="display:inline-block" href='https://github.com/Fanghua-Yu/SUPIR'><img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/Fanghua-Yu/SUPIR?style=social"></a></center></p>
512
+ """
513
 
514
 
515
  claim_md = """
516
+ ## **Piracy**
517
+ The images are not stored but the logs are saved during a month.
518
+ ## **How to get SUPIR**
519
+ You can get SUPIR on HuggingFace by [duplicating this space](https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR?duplicate=true) and set GPU.
520
+ You can also install SUPIR on your computer following [this tutorial](https://huggingface.co/blog/MonsterMMORPG/supir-sota-image-upscale-better-than-magnific-ai).
521
+ You can install _Pinokio_ on your computer and then install _SUPIR_ into it. It should be quite easy if you have an Nvidia GPU.
522
  ## **Terms of use**
523
  By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. Please submit a feedback to us if you get any inappropriate answer! We will collect those to keep improving our models. For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
524
  ## **License**
525
  The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/Fanghua-Yu/SUPIR) of SUPIR.
526
  """
527
 
528
+ # Gradio interface
529
+ with gr.Blocks() as interface:
530
+ if torch.cuda.device_count() == 0:
531
+ with gr.Row():
532
+ gr.HTML("""
533
+ <p style="background-color: red;"><big><big><big><b>⚠️To use SUPIR, <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR?duplicate=true">duplicate this space</a> and set a GPU with 30 GB VRAM.</b>
534
+
535
+ You can't use SUPIR directly here because this space runs on a CPU, which is not enough for SUPIR. Please provide <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR/discussions/new">feedback</a> if you have issues.
536
+ </big></big></big></p>
537
+ """)
538
+ gr.HTML(title_html)
539
+
540
+ input_image = gr.Image(label="Input (*.png, *.webp, *.jpeg, *.jpg, *.gif, *.bmp, *.heic)", show_label=True, type="filepath", height=600, elem_id="image-input")
541
+ rotation = gr.Radio([["No rotation", 0], ["⤵ Rotate +90°", 90], ["↩ Return 180°", 180], ["⤴ Rotate -90°", -90]], label="Orientation correction", info="Will apply the following rotation before restoring the image; the AI needs a good orientation to understand the content", value=0, interactive=True, visible=False)
542
+ with gr.Group():
543
+ prompt = gr.Textbox(label="Image description", info="Help the AI understand what the image represents; describe as much as possible, especially the details we can't see on the original image; you can write in any language", value="", placeholder="A 33 years old man, walking, in the street, Santiago, morning, Summer, photorealistic", lines=3)
544
+ prompt_hint = gr.HTML("You can use a <a href='"'https://huggingface.co/spaces/MaziyarPanahi/llava-llama-3-8b'"'>LlaVa space</a> to auto-generate the description of your image.")
545
+ upscale = gr.Radio([["x1", 1], ["x2", 2], ["x3", 3], ["x4", 4], ["x5", 5], ["x6", 6], ["x7", 7], ["x8", 8], ["x9", 9], ["x10", 10]], label="Upscale factor", info="Resolution x1 to x10", value=2, interactive=True)
546
+ output_format = gr.Radio([["As input", "input"], ["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extention", value="input", interactive=True)
547
+ allocation = gr.Radio([["1 min", 1], ["2 min", 2], ["3 min", 3], ["4 min", 4], ["5 min", 5]], label="GPU allocation time", info="lower=May abort run, higher=Quota penalty for next runs", value=3, interactive=True)
548
+
549
+ with gr.Accordion("Pre-denoising (optional)", open=False):
550
+ gamma_correction = gr.Slider(label="Gamma Correction", info = "lower=lighter, higher=darker", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
551
+ denoise_button = gr.Button(value="Pre-denoise")
552
+ denoise_image = gr.Image(label="Denoised image", show_label=True, type="filepath", sources=[], interactive = False, height=600, elem_id="image-s1")
553
+ denoise_information = gr.HTML(value="If present, the denoised image will be used for the restoration instead of the input image.", visible=False)
554
+
555
+ with gr.Accordion("Advanced options", open=False):
556
+ a_prompt = gr.Textbox(label="Additional image description",
557
+ info="Completes the main image description",
558
+ value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R '
559
+ 'camera, hyper detailed photo - realistic maximum detail, 32k, Color '
560
+ 'Grading, ultra HD, extreme meticulous detailing, skin pore detailing, '
561
+ 'hyper sharpness, perfect without deformations.',
562
+ lines=3)
563
+ n_prompt = gr.Textbox(label="Negative image description",
564
+ info="Disambiguate by listing what the image does NOT represent",
565
+ value='painting, oil painting, illustration, drawing, art, sketch, anime, '
566
+ 'cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, '
567
+ 'worst quality, low quality, frames, watermark, signature, jpeg artifacts, '
568
+ 'deformed, lowres, over-smooth',
569
+ lines=3)
570
+ edm_steps = gr.Slider(label="Steps", info="lower=faster, higher=more details", minimum=1, maximum=200, value=default_setting.edm_steps if torch.cuda.device_count() > 0 else 1, step=1)
571
+ num_samples = gr.Slider(label="Num Samples", info="Number of generated results", minimum=1, maximum=4 if not args.use_image_slider else 1
572
+ , value=1, step=1)
573
+ min_size = gr.Slider(label="Minimum size", info="Minimum height, minimum width of the result", minimum=32, maximum=4096, value=1024, step=32)
574
+ downscale = gr.Radio([["/1", 1], ["/2", 2], ["/3", 3], ["/4", 4], ["/5", 5], ["/6", 6], ["/7", 7], ["/8", 8], ["/9", 9], ["/10", 10]], label="Pre-downscale factor", info="Reducing blurred image reduce the process time", value=1, interactive=True)
575
+ with gr.Row():
576
+ with gr.Column():
577
+ model_select = gr.Radio([["💃 Quality (v0-Q)", "v0-Q"], ["🎯 Fidelity (v0-F)", "v0-F"]], label="Model Selection", info="Pretrained model", value="v0-Q",
578
+ interactive=True)
579
+ with gr.Column():
580
+ color_fix_type = gr.Radio([["None", "None"], ["AdaIn (improve as a photo)", "AdaIn"], ["Wavelet (for JPEG artifacts)", "Wavelet"]], label="Color-Fix Type", info="AdaIn=Improve following a style, Wavelet=For JPEG artifacts", value="AdaIn",
581
+ interactive=True)
582
+ s_cfg = gr.Slider(label="Text Guidance Scale", info="lower=follow the image, higher=follow the prompt", minimum=1.0, maximum=15.0,
583
+ value=default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.1)
584
+ s_stage2 = gr.Slider(label="Restoring Guidance Strength", minimum=0., maximum=1., value=1., step=0.05)
585
+ s_stage1 = gr.Slider(label="Pre-denoising Guidance Strength", minimum=-1.0, maximum=6.0, value=-1.0, step=1.0)
586
+ s_churn = gr.Slider(label="S-Churn", minimum=0, maximum=40, value=5, step=1)
587
+ s_noise = gr.Slider(label="S-Noise", minimum=1.0, maximum=1.1, value=1.003, step=0.001)
588
+ with gr.Row():
589
+ with gr.Column():
590
+ linear_CFG = gr.Checkbox(label="Linear CFG", value=True)
591
+ spt_linear_CFG = gr.Slider(label="CFG Start", minimum=1.0,
592
+ maximum=9.0, value=default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.5)
593
+ with gr.Column():
594
+ linear_s_stage2 = gr.Checkbox(label="Linear Restoring Guidance", value=False)
595
+ spt_linear_s_stage2 = gr.Slider(label="Guidance Start", minimum=0.,
596
+ maximum=1., value=0., step=0.05)
597
+ with gr.Column():
598
+ diff_dtype = gr.Radio([["fp32 (precision)", "fp32"], ["fp16 (medium)", "fp16"], ["bf16 (speed)", "bf16"]], label="Diffusion Data Type", value="fp32",
599
+ interactive=True)
600
+ with gr.Column():
601
+ ae_dtype = gr.Radio([["fp32 (precision)", "fp32"], ["bf16 (speed)", "bf16"]], label="Auto-Encoder Data Type", value="fp32",
602
+ interactive=True)
603
+ randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
604
+ seed = gr.Slider(label="Seed", minimum=0, maximum=max_64_bit_int, step=1, randomize=True)
605
+ with gr.Group():
606
+ param_setting = gr.Radio(["Quality", "Fidelity"], interactive=True, label="Presetting", value = "Quality")
607
+ restart_button = gr.Button(value="Apply presetting")
608
+
609
+ with gr.Column():
610
+ diffusion_button = gr.Button(value="🚀 Upscale/Restore", variant = "primary", elem_id = "process_button")
611
+ reset_btn = gr.Button(value="🧹 Reinit page", variant="stop", elem_id="reset_button", visible = False)
612
+
613
+ restore_information = gr.HTML(value = "Restart the process to get another result.", visible = False)
614
+ result_slider = ImageSlider(label = 'Comparator', show_label = False, interactive = False, elem_id = "slider1", show_download_button = False)
615
+ result_gallery = gr.Gallery(label = 'Downloadable results', show_label = True, interactive = False, elem_id = "gallery1")
616
+
617
+ gr.Examples(
618
+ examples = [
619
+ [
620
+ "./Examples/Example1.png",
621
+ 0,
622
+ None,
623
+ "Group of people, walking, happy, in the street, photorealistic, 8k, extremely detailled",
624
+ "Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
625
+ "painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth",
626
+ 2,
627
+ 1024,
628
+ 1,
629
+ 8,
630
+ 200,
631
+ -1,
632
+ 1,
633
+ 7.5,
634
+ False,
635
+ 42,
636
+ 5,
637
+ 1.003,
638
+ "AdaIn",
639
+ "fp16",
640
+ "bf16",
641
+ 1.0,
642
+ True,
643
+ 4,
644
+ False,
645
+ 0.,
646
+ "v0-Q",
647
+ "input",
648
+ 5
649
+ ],
650
+ [
651
+ "./Examples/Example2.jpeg",
652
+ 0,
653
+ None,
654
+ "La cabeza de un gato atigrado, en una casa, fotorrealista, 8k, extremadamente detallada",
655
+ "Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
656
+ "painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth",
657
+ 1,
658
+ 1024,
659
+ 1,
660
+ 1,
661
+ 200,
662
+ -1,
663
+ 1,
664
+ 7.5,
665
+ False,
666
+ 42,
667
+ 5,
668
+ 1.003,
669
+ "Wavelet",
670
+ "fp16",
671
+ "bf16",
672
+ 1.0,
673
+ True,
674
+ 4,
675
+ False,
676
+ 0.,
677
+ "v0-Q",
678
+ "input",
679
+ 4
680
+ ],
681
+ [
682
+ "./Examples/Example3.webp",
683
+ 0,
684
+ None,
685
+ "A red apple",
686
+ "Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
687
+ "painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth",
688
+ 1,
689
+ 1024,
690
+ 1,
691
+ 1,
692
+ 200,
693
+ -1,
694
+ 1,
695
+ 7.5,
696
+ False,
697
+ 42,
698
+ 5,
699
+ 1.003,
700
+ "Wavelet",
701
+ "fp16",
702
+ "bf16",
703
+ 1.0,
704
+ True,
705
+ 4,
706
+ False,
707
+ 0.,
708
+ "v0-Q",
709
+ "input",
710
+ 4
711
+ ],
712
+ [
713
+ "./Examples/Example3.webp",
714
+ 0,
715
+ None,
716
+ "A red marble",
717
+ "Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
718
+ "painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth",
719
+ 1,
720
+ 1024,
721
+ 1,
722
+ 1,
723
+ 200,
724
+ -1,
725
+ 1,
726
+ 7.5,
727
+ False,
728
+ 42,
729
+ 5,
730
+ 1.003,
731
+ "Wavelet",
732
+ "fp16",
733
+ "bf16",
734
+ 1.0,
735
+ True,
736
+ 4,
737
+ False,
738
+ 0.,
739
+ "v0-Q",
740
+ "input",
741
+ 4
742
+ ],
743
+ ],
744
+ run_on_click = True,
745
+ fn = stage2_process,
746
+ inputs = [
747
+ input_image,
748
+ rotation,
749
+ denoise_image,
750
+ prompt,
751
+ a_prompt,
752
+ n_prompt,
753
+ num_samples,
754
+ min_size,
755
+ downscale,
756
+ upscale,
757
+ edm_steps,
758
+ s_stage1,
759
+ s_stage2,
760
+ s_cfg,
761
+ randomize_seed,
762
+ seed,
763
+ s_churn,
764
+ s_noise,
765
+ color_fix_type,
766
+ diff_dtype,
767
+ ae_dtype,
768
+ gamma_correction,
769
+ linear_CFG,
770
+ linear_s_stage2,
771
+ spt_linear_CFG,
772
+ spt_linear_s_stage2,
773
+ model_select,
774
+ output_format,
775
+ allocation
776
+ ],
777
+ outputs = [
778
+ result_slider,
779
+ result_gallery,
780
+ restore_information,
781
+ reset_btn
782
+ ],
783
+ cache_examples = False,
784
+ )
785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
786
  with gr.Row():
787
  gr.Markdown(claim_md)
788
+
789
+ input_image.upload(fn = check_upload, inputs = [
790
+ input_image
791
+ ], outputs = [
792
+ rotation
793
+ ], queue = False, show_progress = False)
794
+
795
+ denoise_button.click(fn = check, inputs = [
796
+ input_image
797
+ ], outputs = [], queue = False, show_progress = False).success(fn = stage1_process, inputs = [
798
+ input_image,
799
+ gamma_correction,
800
+ diff_dtype,
801
+ ae_dtype
802
+ ], outputs=[
803
+ denoise_image,
804
+ denoise_information
805
+ ])
806
+
807
+ diffusion_button.click(fn = update_seed, inputs = [
808
+ randomize_seed,
809
+ seed
810
+ ], outputs = [
811
+ seed
812
+ ], queue = False, show_progress = False).then(fn = check, inputs = [
813
+ input_image
814
+ ], outputs = [], queue = False, show_progress = False).success(fn=stage2_process, inputs = [
815
+ input_image,
816
+ rotation,
817
+ denoise_image,
818
+ prompt,
819
+ a_prompt,
820
+ n_prompt,
821
+ num_samples,
822
+ min_size,
823
+ downscale,
824
+ upscale,
825
+ edm_steps,
826
+ s_stage1,
827
+ s_stage2,
828
+ s_cfg,
829
+ randomize_seed,
830
+ seed,
831
+ s_churn,
832
+ s_noise,
833
+ color_fix_type,
834
+ diff_dtype,
835
+ ae_dtype,
836
+ gamma_correction,
837
+ linear_CFG,
838
+ linear_s_stage2,
839
+ spt_linear_CFG,
840
+ spt_linear_s_stage2,
841
+ model_select,
842
+ output_format,
843
+ allocation
844
+ ], outputs = [
845
+ result_slider,
846
+ result_gallery,
847
+ restore_information,
848
+ reset_btn
849
+ ]).success(fn = log_information, inputs = [
850
+ result_gallery
851
+ ], outputs = [], queue = False, show_progress = False)
852
+
853
+ result_gallery.change(on_select_result, [result_slider, result_gallery], result_slider)
854
+ result_gallery.select(on_select_result, [result_slider, result_gallery], result_slider)
855
+
856
+ restart_button.click(fn = load_and_reset, inputs = [
857
+ param_setting
858
+ ], outputs = [
859
+ edm_steps,
860
+ s_cfg,
861
+ s_stage2,
862
+ s_stage1,
863
+ s_churn,
864
+ s_noise,
865
+ a_prompt,
866
+ n_prompt,
867
+ color_fix_type,
868
+ linear_CFG,
869
+ linear_s_stage2,
870
+ spt_linear_CFG,
871
+ spt_linear_s_stage2,
872
+ model_select
873
+ ])
874
+
875
+ reset_btn.click(fn = reset, inputs = [], outputs = [
876
+ input_image,
877
+ rotation,
878
+ denoise_image,
879
+ prompt,
880
+ a_prompt,
881
+ n_prompt,
882
+ num_samples,
883
+ min_size,
884
+ downscale,
885
+ upscale,
886
+ edm_steps,
887
+ s_stage1,
888
+ s_stage2,
889
+ s_cfg,
890
+ randomize_seed,
891
+ seed,
892
+ s_churn,
893
+ s_noise,
894
+ color_fix_type,
895
+ diff_dtype,
896
+ ae_dtype,
897
+ gamma_correction,
898
+ linear_CFG,
899
+ linear_s_stage2,
900
+ spt_linear_CFG,
901
+ spt_linear_s_stage2,
902
+ model_select,
903
+ output_format,
904
+ allocation
905
+ ], queue = False, show_progress = False)
906
+
907
+ interface.queue(10).launch()