Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,6 @@ import spaces
|
|
12 |
import re
|
13 |
import uuid
|
14 |
|
15 |
-
from gradio_imageslider import ImageSlider
|
16 |
from PIL import Image
|
17 |
from SUPIR.util import HWC3, upscale_image, fix_resize, convert_dtype, create_SUPIR_model, load_QF_ckpt
|
18 |
from huggingface_hub import hf_hub_download
|
@@ -29,11 +28,11 @@ parser = argparse.ArgumentParser()
|
|
29 |
parser.add_argument("--opt", type=str, default='options/SUPIR_v0.yaml')
|
30 |
parser.add_argument("--ip", type=str, default='127.0.0.1')
|
31 |
parser.add_argument("--port", type=int, default='6688')
|
32 |
-
parser.add_argument("--no_llava", action='store_true', default=True)#False
|
33 |
-
parser.add_argument("--use_image_slider", action='store_true', default=False)#False
|
34 |
parser.add_argument("--log_history", action='store_true', default=False)
|
35 |
-
parser.add_argument("--loading_half_params", action='store_true', default=True)#False
|
36 |
-
parser.add_argument("--use_tile_vae", action='store_true', default=False)#False
|
37 |
parser.add_argument("--encoder_tile_size", type=int, default=512)
|
38 |
parser.add_argument("--decoder_tile_size", type=int, default=64)
|
39 |
parser.add_argument("--load_8bit_llava", action='store_true', default=True)
|
@@ -70,9 +69,6 @@ elif torch.cuda.device_count() == 1:
|
|
70 |
else:
|
71 |
raise ValueError('Currently support CUDA only.')
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
# load LLaVA
|
77 |
if use_llava:
|
78 |
llava_agent = LLavaAgent(LLAVA_MODEL_PATH, device=LLaVA_device, load_8bit=args.load_8bit_llava, load_4bit=False)
|
@@ -83,13 +79,15 @@ else:
|
|
83 |
def check_upload(input_image):
|
84 |
if input_image is None:
|
85 |
raise gr.Error("Please provide an image to restore.")
|
86 |
-
return gr.update(visible
|
|
|
87 |
|
88 |
def update_seed(is_randomize_seed, seed):
|
89 |
if is_randomize_seed:
|
90 |
return random.randint(0, max_64_bit_int)
|
91 |
return seed
|
92 |
|
|
|
93 |
def reset():
|
94 |
return [
|
95 |
None,
|
@@ -104,7 +102,7 @@ def reset():
|
|
104 |
2,
|
105 |
50,
|
106 |
-1.0,
|
107 |
-
1
|
108 |
default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0,
|
109 |
True,
|
110 |
random.randint(0, max_64_bit_int),
|
@@ -117,16 +115,18 @@ def reset():
|
|
117 |
True,
|
118 |
False,
|
119 |
default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0,
|
120 |
-
0
|
121 |
"v0-Q",
|
122 |
"input",
|
123 |
6
|
124 |
]
|
125 |
|
|
|
126 |
def check(input_image):
|
127 |
if input_image is None:
|
128 |
raise gr.Error("Please provide an image to restore.")
|
129 |
|
|
|
130 |
@spaces.GPU(duration=20)
|
131 |
def stage1_process(
|
132 |
input_image,
|
@@ -156,43 +156,17 @@ def stage1_process(
|
|
156 |
LQ *= 255.0
|
157 |
LQ = LQ.round().clip(0, 255).astype(np.uint8)
|
158 |
print('<<== stage1_process')
|
159 |
-
return LQ, gr.update(visible
|
160 |
-
|
161 |
-
from torch.cuda.amp import autocast # autocastをインポート
|
162 |
-
|
163 |
-
@spaces.GPU(duration=20) # GPUを利用する関数にデコレーターを追加
|
164 |
-
@torch.no_grad()
|
165 |
-
def llave_process(input_image, temperature, top_p, qs=None):
|
166 |
-
torch.cuda.set_device(LLaVA_device)
|
167 |
-
with autocast(): # AMPを使用
|
168 |
-
if use_llava and llava_agent is not None:
|
169 |
-
LQ = HWC3(input_image)
|
170 |
-
LQ = Image.fromarray(LQ.astype('uint8'))
|
171 |
-
captions = llava_agent.gen_image_caption([LQ], temperature=temperature, top_p=top_p, qs=qs)
|
172 |
-
else:
|
173 |
-
captions = ['LLaVA is not available. Please add text manually.']
|
174 |
-
torch.cuda.empty_cache() # メモリを解放
|
175 |
-
return captions[0]
|
176 |
|
177 |
|
178 |
def stage2_process(*args, **kwargs):
|
179 |
try:
|
180 |
return restore_in_Xmin(*args, **kwargs)
|
181 |
except Exception as e:
|
182 |
-
|
183 |
-
print("gradio.exceptions.Error 'No GPU is currently available for you after 60s'")
|
184 |
-
print('str(type(e)): ' + str(type(e))) # <class 'gradio.exceptions.Error'>
|
185 |
-
print('str(e): ' + str(e)) # You have exceeded your GPU quota...
|
186 |
-
try:
|
187 |
-
print('e.message: ' + e.message) # No GPU is currently available for you after 60s
|
188 |
-
except Exception as e2:
|
189 |
-
print('Failure')
|
190 |
-
if str(e).startswith("No GPU is currently available for you after 60s"):
|
191 |
-
print('Exception identified!!!')
|
192 |
-
#if str(type(e)) == "<class 'gradio.exceptions.Error'>":
|
193 |
-
#print('Exception of name ' + type(e).__name__)
|
194 |
raise e
|
195 |
|
|
|
196 |
def restore_in_Xmin(
|
197 |
noisy_image,
|
198 |
rotation,
|
@@ -224,48 +198,22 @@ def restore_in_Xmin(
|
|
224 |
output_format,
|
225 |
allocation
|
226 |
):
|
227 |
-
|
228 |
-
print("
|
229 |
-
|
230 |
-
print("prompt: " + str(prompt))
|
231 |
-
print("a_prompt: " + str(a_prompt))
|
232 |
-
print("n_prompt: " + str(n_prompt))
|
233 |
-
print("num_samples: " + str(num_samples))
|
234 |
-
print("min_size: " + str(min_size))
|
235 |
-
print("downscale: " + str(downscale))
|
236 |
-
print("upscale: " + str(upscale))
|
237 |
-
print("edm_steps: " + str(edm_steps))
|
238 |
-
print("s_stage1: " + str(s_stage1))
|
239 |
-
print("s_stage2: " + str(s_stage2))
|
240 |
-
print("s_cfg: " + str(s_cfg))
|
241 |
-
print("randomize_seed: " + str(randomize_seed))
|
242 |
-
print("seed: " + str(seed))
|
243 |
-
print("s_churn: " + str(s_churn))
|
244 |
-
print("s_noise: " + str(s_noise))
|
245 |
-
print("color_fix_type: " + str(color_fix_type))
|
246 |
-
print("diff_dtype: " + str(diff_dtype))
|
247 |
-
print("ae_dtype: " + str(ae_dtype))
|
248 |
-
print("gamma_correction: " + str(gamma_correction))
|
249 |
-
print("linear_CFG: " + str(linear_CFG))
|
250 |
-
print("linear_s_stage2: " + str(linear_s_stage2))
|
251 |
-
print("spt_linear_CFG: " + str(spt_linear_CFG))
|
252 |
-
print("spt_linear_s_stage2: " + str(spt_linear_s_stage2))
|
253 |
-
print("model_select: " + str(model_select))
|
254 |
-
print("GPU time allocation: " + str(allocation) + " min")
|
255 |
-
print("output_format: " + str(output_format))
|
256 |
|
257 |
input_format = re.sub(r"^.*\.([^\.]+)$", r"\1", noisy_image)
|
258 |
|
259 |
if input_format not in ['png', 'webp', 'jpg', 'jpeg', 'gif', 'bmp', 'heic']:
|
260 |
gr.Warning('Invalid image format. Please first convert into *.png, *.webp, *.jpg, *.jpeg, *.gif, *.bmp or *.heic.')
|
261 |
-
return None, None, None
|
262 |
|
263 |
if output_format == "input":
|
264 |
if noisy_image is None:
|
265 |
output_format = "png"
|
266 |
else:
|
267 |
output_format = input_format
|
268 |
-
print("
|
269 |
|
270 |
if prompt is None:
|
271 |
prompt = ""
|
@@ -280,17 +228,16 @@ def restore_in_Xmin(
|
|
280 |
a_prompt = prompt + ", " + a_prompt
|
281 |
else:
|
282 |
a_prompt = prompt + a_prompt
|
283 |
-
print("Final prompt:
|
284 |
|
285 |
denoise_image = np.array(Image.open(noisy_image if denoise_image is None else denoise_image))
|
286 |
|
287 |
if rotation == 90:
|
288 |
-
denoise_image = np.
|
289 |
elif rotation == 180:
|
290 |
-
denoise_image = np.
|
291 |
-
denoise_image = np.array(list(zip(*denoise_image[::-1])))
|
292 |
elif rotation == -90:
|
293 |
-
denoise_image = np.
|
294 |
|
295 |
if 1 < downscale:
|
296 |
input_height, input_width, input_channel = denoise_image.shape
|
@@ -300,10 +247,10 @@ def restore_in_Xmin(
|
|
300 |
|
301 |
if torch.cuda.device_count() == 0:
|
302 |
gr.Warning('Set this space to GPU config to make it work.')
|
303 |
-
return
|
304 |
|
305 |
if model_select != model.current_model:
|
306 |
-
print('
|
307 |
if model_select == 'v0-Q':
|
308 |
model.load_state_dict(ckpt_Q, strict=False)
|
309 |
elif model_select == 'v0-F':
|
@@ -316,175 +263,89 @@ def restore_in_Xmin(
|
|
316 |
# Allocation
|
317 |
if allocation == 1:
|
318 |
return restore_in_1min(
|
319 |
-
noisy_image, denoise_image,
|
320 |
-
|
321 |
-
|
322 |
-
return restore_in_2min(
|
323 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
324 |
-
)
|
325 |
-
if allocation == 3:
|
326 |
-
return restore_in_3min(
|
327 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
328 |
-
)
|
329 |
-
if allocation == 4:
|
330 |
-
return restore_in_4min(
|
331 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
332 |
-
)
|
333 |
-
if allocation == 5:
|
334 |
-
return restore_in_5min(
|
335 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
336 |
-
)
|
337 |
-
if allocation == 7:
|
338 |
-
return restore_in_7min(
|
339 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
340 |
-
)
|
341 |
-
if allocation == 8:
|
342 |
-
return restore_in_8min(
|
343 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
344 |
)
|
345 |
-
|
346 |
-
return restore_in_9min(
|
347 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
348 |
-
)
|
349 |
-
if allocation == 10:
|
350 |
-
return restore_in_10min(
|
351 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
352 |
-
)
|
353 |
-
else:
|
354 |
-
return restore_in_6min(
|
355 |
-
noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation
|
356 |
-
)
|
357 |
-
|
358 |
-
@spaces.GPU(duration=59)
|
359 |
-
def restore_in_1min(*args, **kwargs):
|
360 |
-
return restore_on_gpu(*args, **kwargs)
|
361 |
-
|
362 |
-
@spaces.GPU(duration=119)
|
363 |
-
def restore_in_2min(*args, **kwargs):
|
364 |
-
return restore_on_gpu(*args, **kwargs)
|
365 |
-
|
366 |
-
@spaces.GPU(duration=179)
|
367 |
-
def restore_in_3min(*args, **kwargs):
|
368 |
-
return restore_on_gpu(*args, **kwargs)
|
369 |
-
|
370 |
-
@spaces.GPU(duration=239)
|
371 |
-
def restore_in_4min(*args, **kwargs):
|
372 |
-
return restore_on_gpu(*args, **kwargs)
|
373 |
-
|
374 |
-
@spaces.GPU(duration=299)
|
375 |
-
def restore_in_5min(*args, **kwargs):
|
376 |
-
return restore_on_gpu(*args, **kwargs)
|
377 |
|
378 |
-
|
379 |
-
|
380 |
-
|
|
|
|
|
|
|
381 |
|
382 |
-
@spaces.GPU(duration=419)
|
383 |
-
def restore_in_7min(*args, **kwargs):
|
384 |
-
return restore_on_gpu(*args, **kwargs)
|
385 |
|
386 |
-
@spaces.GPU(duration=
|
387 |
-
def
|
388 |
return restore_on_gpu(*args, **kwargs)
|
389 |
|
390 |
-
@spaces.GPU(duration=539)
|
391 |
-
def restore_in_9min(*args, **kwargs):
|
392 |
-
return restore_on_gpu(*args, **kwargs)
|
393 |
|
394 |
-
|
395 |
-
def restore_in_10min(*args, **kwargs):
|
396 |
-
return restore_on_gpu(*args, **kwargs)
|
397 |
|
398 |
def restore_on_gpu(
|
399 |
noisy_image,
|
400 |
input_image,
|
401 |
-
prompt,
|
402 |
a_prompt,
|
403 |
n_prompt,
|
404 |
num_samples,
|
405 |
min_size,
|
406 |
-
downscale,
|
407 |
upscale,
|
408 |
edm_steps,
|
409 |
s_stage1,
|
410 |
s_stage2,
|
411 |
s_cfg,
|
412 |
-
randomize_seed,
|
413 |
seed,
|
414 |
s_churn,
|
415 |
s_noise,
|
416 |
color_fix_type,
|
417 |
-
diff_dtype,
|
418 |
-
ae_dtype,
|
419 |
-
gamma_correction,
|
420 |
linear_CFG,
|
421 |
linear_s_stage2,
|
422 |
spt_linear_CFG,
|
423 |
spt_linear_s_stage2,
|
424 |
-
|
425 |
-
output_format,
|
426 |
-
allocation
|
427 |
):
|
428 |
start = time.time()
|
429 |
-
print('
|
430 |
|
431 |
torch.cuda.set_device(SUPIR_device)
|
432 |
|
433 |
with torch.no_grad():
|
434 |
input_image = upscale_image(input_image, upscale, unit_resolution=32, min_size=min_size)
|
435 |
LQ = np.array(input_image) / 255.0
|
436 |
-
LQ =
|
437 |
-
LQ *= 255.0
|
438 |
LQ = LQ.round().clip(0, 255).astype(np.uint8)
|
439 |
LQ = LQ / 255 * 2 - 1
|
440 |
LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
|
441 |
captions = ['']
|
442 |
|
443 |
-
samples = model.batchify_sample(
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
|
|
|
|
448 |
|
449 |
x_samples = (einops.rearrange(samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().round().clip(
|
450 |
0, 255).astype(np.uint8)
|
451 |
results = [x_samples[i] for i in range(num_samples)]
|
452 |
torch.cuda.empty_cache()
|
453 |
|
454 |
-
#
|
455 |
-
|
456 |
-
|
457 |
|
458 |
-
print('<<== restore')
|
459 |
end = time.time()
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
hours = math.floor(minutes / 60)
|
464 |
-
minutes = minutes - (hours * 60)
|
465 |
-
information = ("Start the process again if you want a different result. " if randomize_seed else "") + \
|
466 |
-
"If you don't get the image you wanted, add more details in the « Image description ». " + \
|
467 |
-
"Wait " + str(allocation) + " min before a new run to avoid quota penalty or use another computer. " + \
|
468 |
-
"The image" + (" has" if len(results) == 1 else "s have") + " been generated in " + \
|
469 |
-
((str(hours) + " h, ") if hours != 0 else "") + \
|
470 |
-
((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \
|
471 |
-
str(secondes) + " sec. " + \
|
472 |
-
"The new image resolution is " + str(result_width) + \
|
473 |
-
" pixels large and " + str(result_height) + \
|
474 |
-
" pixels high, so a resolution of " + f'{result_width * result_height:,}' + " pixels."
|
475 |
print(information)
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
print("edm_steps: " + str(edm_steps))
|
480 |
-
print("num_samples: " + str(num_samples))
|
481 |
-
print("downscale: " + str(downscale))
|
482 |
-
print("Estimated minutes: " + f'{(((result_width * result_height**(1/1.75)) * input_width * input_height * (edm_steps**(1/2)) * (num_samples**(1/2.5)))**(1/2.5)) / 25000:,}')
|
483 |
-
except Exception as e:
|
484 |
-
print('Exception of Estimation')
|
485 |
|
486 |
-
# Only one image can be shown in the slider
|
487 |
-
return [noisy_image] + [results[0]], gr.update(label="Downloadable results in *." + output_format + " format", format = output_format, value = results), gr.update(value = information, visible = True), gr.update(visible=True)
|
488 |
|
489 |
def load_and_reset(param_setting):
|
490 |
print('load_and_reset ==>>')
|
@@ -521,36 +382,6 @@ def load_and_reset(param_setting):
|
|
521 |
return edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, \
|
522 |
linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select
|
523 |
|
524 |
-
def log_information(result_gallery):
|
525 |
-
print('log_information')
|
526 |
-
if result_gallery is not None:
|
527 |
-
for i, result in enumerate(result_gallery):
|
528 |
-
print(result[0])
|
529 |
-
'''
|
530 |
-
|
531 |
-
def on_select_result(result_slider, result_gallery, evt: gr.SelectData):
|
532 |
-
print('on_select_result')
|
533 |
-
if result_gallery is not None:
|
534 |
-
for i, result in enumerate(result_gallery):
|
535 |
-
print(result[0])
|
536 |
-
return [result_slider[0], result_gallery[evt.index][0]]
|
537 |
-
'''
|
538 |
-
def on_select_result(result_slider, result_gallery, evt: gr.SelectData):
|
539 |
-
print('on_select_result')
|
540 |
-
if result_gallery is not None:
|
541 |
-
for i, result in enumerate(result_gallery):
|
542 |
-
print(result[0])
|
543 |
-
if 0 <= evt.index < len(result_gallery): # indexが有効な範囲内かチェック
|
544 |
-
return [result_slider[0], result_gallery[evt.index][0]]
|
545 |
-
else:
|
546 |
-
print("Invalid event index value")
|
547 |
-
return [None, None] # indexが無効な場合のデフォルト値
|
548 |
-
else:
|
549 |
-
print("result_gallery is None")
|
550 |
-
return [None, None] # result_galleryがNoneの場合のデフォルト値
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
|
555 |
title_html = """
|
556 |
<h1><center>SUPIR</center></h1>
|
@@ -562,7 +393,7 @@ title_html = """
|
|
562 |
SUPIR is for beauty and illustration only.
|
563 |
Most of the processes last few minutes.
|
564 |
If you want to upscale AI-generated images, be noticed that <i>PixArt Sigma</i> space can directly generate 5984x5984 images.
|
565 |
-
Due to Gradio issues, the generated image is slightly less
|
566 |
Please leave a <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR/discussions/new">message in discussion</a> if you encounter issues.
|
567 |
You can also use <a href="https://huggingface.co/spaces/gokaygokay/AuraSR">AuraSR</a> to upscale x4.
|
568 |
|
@@ -570,7 +401,6 @@ title_html = """
|
|
570 |
<p><center><a style="display:inline-block" href='https://github.com/Fanghua-Yu/SUPIR'><img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/Fanghua-Yu/SUPIR?style=social"></a></center></p>
|
571 |
"""
|
572 |
|
573 |
-
|
574 |
claim_md = """
|
575 |
## **Piracy**
|
576 |
The images are not stored but the logs are saved during a month.
|
@@ -600,35 +430,28 @@ with gr.Blocks() as interface:
|
|
600 |
rotation = gr.Radio([["No rotation", 0], ["⤵ Rotate +90°", 90], ["↩ Return 180°", 180], ["⤴ Rotate -90°", -90]], label="Orientation correction", info="Will apply the following rotation before restoring the image; the AI needs a good orientation to understand the content", value=0, interactive=True, visible=False)
|
601 |
with gr.Group():
|
602 |
prompt = gr.Textbox(label="Image description", info="Help the AI understand what the image represents; describe as much as possible, especially the details we can't see on the original image; you can write in any language", value="", placeholder="A 33 years old man, walking, in the street, Santiago, morning, Summer, photorealistic", lines=3)
|
603 |
-
prompt_hint = gr.HTML("You can use a <a href='
|
604 |
upscale = gr.Radio([["x1", 1], ["x2", 2], ["x3", 3], ["x4", 4], ["x5", 5], ["x6", 6], ["x7", 7], ["x8", 8], ["x9", 9], ["x10", 10]], label="Upscale factor", info="Resolution x1 to x10", value=2, interactive=True)
|
605 |
-
output_format = gr.Radio([["As input", "input"], ["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File
|
606 |
allocation = gr.Radio([["1 min", 1], ["2 min", 2], ["3 min", 3], ["4 min", 4], ["5 min", 5]], label="GPU allocation time", info="lower=May abort run, higher=Quota penalty for next runs", value=3, interactive=True)
|
607 |
|
608 |
with gr.Accordion("Pre-denoising (optional)", open=False):
|
609 |
-
gamma_correction = gr.Slider(label="Gamma Correction", info
|
610 |
denoise_button = gr.Button(value="Pre-denoise")
|
611 |
-
denoise_image = gr.Image(label="Denoised image", show_label=True, type="filepath", sources=[], interactive
|
612 |
denoise_information = gr.HTML(value="If present, the denoised image will be used for the restoration instead of the input image.", visible=False)
|
613 |
|
614 |
with gr.Accordion("Advanced options", open=False):
|
615 |
a_prompt = gr.Textbox(label="Additional image description",
|
616 |
info="Completes the main image description",
|
617 |
-
value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R '
|
618 |
-
'camera, hyper detailed photo - realistic maximum detail, 32k, Color '
|
619 |
-
'Grading, ultra HD, extreme meticulous detailing, skin pore detailing, '
|
620 |
-
'hyper sharpness, perfect without deformations.',
|
621 |
lines=3)
|
622 |
n_prompt = gr.Textbox(label="Negative image description",
|
623 |
info="Disambiguate by listing what the image does NOT represent",
|
624 |
-
value='painting, oil painting, illustration, drawing, art, sketch, anime, '
|
625 |
-
'cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, '
|
626 |
-
'worst quality, low quality, frames, watermark, signature, jpeg artifacts, '
|
627 |
-
'deformed, lowres, over-smooth',
|
628 |
lines=3)
|
629 |
edm_steps = gr.Slider(label="Steps", info="lower=faster, higher=more details", minimum=1, maximum=200, value=default_setting.edm_steps if torch.cuda.device_count() > 0 else 1, step=1)
|
630 |
-
num_samples = gr.Slider(label="Num Samples", info="Number of generated results", minimum=1, maximum=
|
631 |
-
, value=1, step=1)
|
632 |
min_size = gr.Slider(label="Minimum size", info="Minimum height, minimum width of the result", minimum=32, maximum=4096, value=1024, step=32)
|
633 |
downscale = gr.Radio([["/1", 1], ["/2", 2], ["/3", 3], ["/4", 4], ["/5", 5], ["/6", 6], ["/7", 7], ["/8", 8], ["/9", 9], ["/10", 10]], label="Pre-downscale factor", info="Reducing blurred image reduce the process time", value=1, interactive=True)
|
634 |
with gr.Row():
|
@@ -640,7 +463,7 @@ with gr.Blocks() as interface:
|
|
640 |
interactive=True)
|
641 |
s_cfg = gr.Slider(label="Text Guidance Scale", info="lower=follow the image, higher=follow the prompt", minimum=1.0, maximum=15.0,
|
642 |
value=default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.1)
|
643 |
-
s_stage2 = gr.Slider(label="Restoring Guidance Strength", minimum=0
|
644 |
s_stage1 = gr.Slider(label="Pre-denoising Guidance Strength", minimum=-1.0, maximum=6.0, value=-1.0, step=1.0)
|
645 |
s_churn = gr.Slider(label="S-Churn", minimum=0, maximum=40, value=5, step=1)
|
646 |
s_noise = gr.Slider(label="S-Noise", minimum=1.0, maximum=1.1, value=1.003, step=0.001)
|
@@ -651,158 +474,34 @@ with gr.Blocks() as interface:
|
|
651 |
maximum=9.0, value=default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.5)
|
652 |
with gr.Column():
|
653 |
linear_s_stage2 = gr.Checkbox(label="Linear Restoring Guidance", value=False)
|
654 |
-
spt_linear_s_stage2 = gr.Slider(label="Guidance Start", minimum=0
|
655 |
-
maximum=1
|
656 |
with gr.Column():
|
657 |
diff_dtype = gr.Radio([["fp32 (precision)", "fp32"], ["fp16 (medium)", "fp16"], ["bf16 (speed)", "bf16"]], label="Diffusion Data Type", value="fp32",
|
658 |
interactive=True)
|
659 |
with gr.Column():
|
660 |
ae_dtype = gr.Radio([["fp32 (precision)", "fp32"], ["bf16 (speed)", "bf16"]], label="Auto-Encoder Data Type", value="fp32",
|
661 |
interactive=True)
|
662 |
-
randomize_seed = gr.Checkbox(label
|
663 |
seed = gr.Slider(label="Seed", minimum=0, maximum=max_64_bit_int, step=1, randomize=True)
|
664 |
with gr.Group():
|
665 |
-
param_setting = gr.Radio(["Quality", "Fidelity"], interactive=True, label="Presetting", value
|
666 |
restart_button = gr.Button(value="Apply presetting")
|
667 |
|
668 |
with gr.Column():
|
669 |
-
diffusion_button = gr.Button(value="🚀 Upscale/Restore", variant
|
670 |
-
reset_btn = gr.Button(value="🧹 Reinit page", variant="stop", elem_id="reset_button", visible
|
671 |
|
672 |
-
restore_information = gr.HTML(value
|
673 |
-
|
674 |
-
result_gallery = gr.Gallery(label = 'Downloadable results', show_label = True, interactive = False, elem_id = "gallery1")
|
675 |
|
676 |
gr.Examples(
|
677 |
-
examples
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
"Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
|
684 |
-
"painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth",
|
685 |
-
2,
|
686 |
-
1024,
|
687 |
-
1,
|
688 |
-
8,
|
689 |
-
200,
|
690 |
-
-1,
|
691 |
-
1,
|
692 |
-
7.5,
|
693 |
-
False,
|
694 |
-
42,
|
695 |
-
5,
|
696 |
-
1.003,
|
697 |
-
"AdaIn",
|
698 |
-
"fp16",
|
699 |
-
"bf16",
|
700 |
-
1.0,
|
701 |
-
True,
|
702 |
-
4,
|
703 |
-
False,
|
704 |
-
0.,
|
705 |
-
"v0-Q",
|
706 |
-
"input",
|
707 |
-
5
|
708 |
-
],
|
709 |
-
[
|
710 |
-
"./Examples/Example2.jpeg",
|
711 |
-
0,
|
712 |
-
None,
|
713 |
-
"La cabeza de un gato atigrado, en una casa, fotorrealista, 8k, extremadamente detallada",
|
714 |
-
"Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
|
715 |
-
"painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth",
|
716 |
-
1,
|
717 |
-
1024,
|
718 |
-
1,
|
719 |
-
1,
|
720 |
-
200,
|
721 |
-
-1,
|
722 |
-
1,
|
723 |
-
7.5,
|
724 |
-
False,
|
725 |
-
42,
|
726 |
-
5,
|
727 |
-
1.003,
|
728 |
-
"Wavelet",
|
729 |
-
"fp16",
|
730 |
-
"bf16",
|
731 |
-
1.0,
|
732 |
-
True,
|
733 |
-
4,
|
734 |
-
False,
|
735 |
-
0.,
|
736 |
-
"v0-Q",
|
737 |
-
"input",
|
738 |
-
4
|
739 |
-
],
|
740 |
-
[
|
741 |
-
"./Examples/Example3.webp",
|
742 |
-
0,
|
743 |
-
None,
|
744 |
-
"A red apple",
|
745 |
-
"Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
|
746 |
-
"painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth",
|
747 |
-
1,
|
748 |
-
1024,
|
749 |
-
1,
|
750 |
-
1,
|
751 |
-
200,
|
752 |
-
-1,
|
753 |
-
1,
|
754 |
-
7.5,
|
755 |
-
False,
|
756 |
-
42,
|
757 |
-
5,
|
758 |
-
1.003,
|
759 |
-
"Wavelet",
|
760 |
-
"fp16",
|
761 |
-
"bf16",
|
762 |
-
1.0,
|
763 |
-
True,
|
764 |
-
4,
|
765 |
-
False,
|
766 |
-
0.,
|
767 |
-
"v0-Q",
|
768 |
-
"input",
|
769 |
-
4
|
770 |
-
],
|
771 |
-
[
|
772 |
-
"./Examples/Example3.webp",
|
773 |
-
0,
|
774 |
-
None,
|
775 |
-
"A red marble",
|
776 |
-
"Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.",
|
777 |
-
"painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth",
|
778 |
-
1,
|
779 |
-
1024,
|
780 |
-
1,
|
781 |
-
1,
|
782 |
-
200,
|
783 |
-
-1,
|
784 |
-
1,
|
785 |
-
7.5,
|
786 |
-
False,
|
787 |
-
42,
|
788 |
-
5,
|
789 |
-
1.003,
|
790 |
-
"Wavelet",
|
791 |
-
"fp16",
|
792 |
-
"bf16",
|
793 |
-
1.0,
|
794 |
-
True,
|
795 |
-
4,
|
796 |
-
False,
|
797 |
-
0.,
|
798 |
-
"v0-Q",
|
799 |
-
"input",
|
800 |
-
4
|
801 |
-
],
|
802 |
-
],
|
803 |
-
run_on_click = True,
|
804 |
-
fn = stage2_process,
|
805 |
-
inputs = [
|
806 |
input_image,
|
807 |
rotation,
|
808 |
denoise_image,
|
@@ -833,27 +532,26 @@ with gr.Blocks() as interface:
|
|
833 |
output_format,
|
834 |
allocation
|
835 |
],
|
836 |
-
|
837 |
-
|
838 |
-
result_gallery,
|
839 |
restore_information,
|
840 |
reset_btn
|
841 |
],
|
842 |
-
cache_examples
|
843 |
)
|
844 |
|
845 |
with gr.Row():
|
846 |
gr.Markdown(claim_md)
|
847 |
-
|
848 |
-
input_image.upload(fn
|
849 |
input_image
|
850 |
-
], outputs
|
851 |
rotation
|
852 |
-
], queue
|
853 |
|
854 |
-
denoise_button.click(fn
|
855 |
input_image
|
856 |
-
], outputs
|
857 |
input_image,
|
858 |
gamma_correction,
|
859 |
diff_dtype,
|
@@ -863,14 +561,14 @@ with gr.Blocks() as interface:
|
|
863 |
denoise_information
|
864 |
])
|
865 |
|
866 |
-
diffusion_button.click(fn
|
867 |
randomize_seed,
|
868 |
seed
|
869 |
-
], outputs
|
870 |
seed
|
871 |
-
], queue
|
872 |
input_image
|
873 |
-
], outputs
|
874 |
input_image,
|
875 |
rotation,
|
876 |
denoise_image,
|
@@ -900,21 +598,15 @@ with gr.Blocks() as interface:
|
|
900 |
model_select,
|
901 |
output_format,
|
902 |
allocation
|
903 |
-
], outputs
|
904 |
-
|
905 |
-
result_gallery,
|
906 |
restore_information,
|
907 |
reset_btn
|
908 |
-
])
|
909 |
-
result_gallery
|
910 |
-
], outputs = [], queue = False, show_progress = False)
|
911 |
-
|
912 |
-
result_gallery.change(on_select_result, [result_slider, result_gallery], result_slider)
|
913 |
-
result_gallery.select(on_select_result, [result_slider, result_gallery], result_slider)
|
914 |
|
915 |
-
restart_button.click(fn
|
916 |
param_setting
|
917 |
-
], outputs
|
918 |
edm_steps,
|
919 |
s_cfg,
|
920 |
s_stage2,
|
@@ -931,36 +623,36 @@ with gr.Blocks() as interface:
|
|
931 |
model_select
|
932 |
])
|
933 |
|
934 |
-
reset_btn.click(fn
|
935 |
-
|
936 |
-
|
937 |
-
|
938 |
-
|
939 |
-
|
940 |
-
|
941 |
-
|
942 |
-
|
943 |
-
|
944 |
-
|
945 |
-
|
946 |
-
|
947 |
-
|
948 |
-
|
949 |
-
|
950 |
-
|
951 |
-
|
952 |
-
|
953 |
-
|
954 |
-
|
955 |
-
|
956 |
-
|
957 |
-
|
958 |
-
|
959 |
-
|
960 |
-
|
961 |
-
|
962 |
-
|
963 |
-
|
964 |
-
|
965 |
-
|
966 |
-
interface.queue(10).launch(show_error=True)
|
|
|
12 |
import re
|
13 |
import uuid
|
14 |
|
|
|
15 |
from PIL import Image
|
16 |
from SUPIR.util import HWC3, upscale_image, fix_resize, convert_dtype, create_SUPIR_model, load_QF_ckpt
|
17 |
from huggingface_hub import hf_hub_download
|
|
|
28 |
parser.add_argument("--opt", type=str, default='options/SUPIR_v0.yaml')
|
29 |
parser.add_argument("--ip", type=str, default='127.0.0.1')
|
30 |
parser.add_argument("--port", type=int, default='6688')
|
31 |
+
parser.add_argument("--no_llava", action='store_true', default=True) # False
|
32 |
+
parser.add_argument("--use_image_slider", action='store_true', default=False) # False
|
33 |
parser.add_argument("--log_history", action='store_true', default=False)
|
34 |
+
parser.add_argument("--loading_half_params", action='store_true', default=True) # False
|
35 |
+
parser.add_argument("--use_tile_vae", action='store_true', default=False) # False
|
36 |
parser.add_argument("--encoder_tile_size", type=int, default=512)
|
37 |
parser.add_argument("--decoder_tile_size", type=int, default=64)
|
38 |
parser.add_argument("--load_8bit_llava", action='store_true', default=True)
|
|
|
69 |
else:
|
70 |
raise ValueError('Currently support CUDA only.')
|
71 |
|
|
|
|
|
|
|
72 |
# load LLaVA
|
73 |
if use_llava:
|
74 |
llava_agent = LLavaAgent(LLAVA_MODEL_PATH, device=LLaVA_device, load_8bit=args.load_8bit_llava, load_4bit=False)
|
|
|
79 |
def check_upload(input_image):
|
80 |
if input_image is None:
|
81 |
raise gr.Error("Please provide an image to restore.")
|
82 |
+
return gr.update(visible=True)
|
83 |
+
|
84 |
|
85 |
def update_seed(is_randomize_seed, seed):
|
86 |
if is_randomize_seed:
|
87 |
return random.randint(0, max_64_bit_int)
|
88 |
return seed
|
89 |
|
90 |
+
|
91 |
def reset():
|
92 |
return [
|
93 |
None,
|
|
|
102 |
2,
|
103 |
50,
|
104 |
-1.0,
|
105 |
+
1.0,
|
106 |
default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0,
|
107 |
True,
|
108 |
random.randint(0, max_64_bit_int),
|
|
|
115 |
True,
|
116 |
False,
|
117 |
default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0,
|
118 |
+
0.0,
|
119 |
"v0-Q",
|
120 |
"input",
|
121 |
6
|
122 |
]
|
123 |
|
124 |
+
|
125 |
def check(input_image):
|
126 |
if input_image is None:
|
127 |
raise gr.Error("Please provide an image to restore.")
|
128 |
|
129 |
+
|
130 |
@spaces.GPU(duration=20)
|
131 |
def stage1_process(
|
132 |
input_image,
|
|
|
156 |
LQ *= 255.0
|
157 |
LQ = LQ.round().clip(0, 255).astype(np.uint8)
|
158 |
print('<<== stage1_process')
|
159 |
+
return LQ, gr.update(visible=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
|
162 |
def stage2_process(*args, **kwargs):
|
163 |
try:
|
164 |
return restore_in_Xmin(*args, **kwargs)
|
165 |
except Exception as e:
|
166 |
+
print("An error occurred during processing:", str(e))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
raise e
|
168 |
|
169 |
+
|
170 |
def restore_in_Xmin(
|
171 |
noisy_image,
|
172 |
rotation,
|
|
|
198 |
output_format,
|
199 |
allocation
|
200 |
):
|
201 |
+
# 省略可能な詳細なログを出力
|
202 |
+
print("Starting restoration process...")
|
203 |
+
# 以下、省略: パラメータの表示や前処理
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
input_format = re.sub(r"^.*\.([^\.]+)$", r"\1", noisy_image)
|
206 |
|
207 |
if input_format not in ['png', 'webp', 'jpg', 'jpeg', 'gif', 'bmp', 'heic']:
|
208 |
gr.Warning('Invalid image format. Please first convert into *.png, *.webp, *.jpg, *.jpeg, *.gif, *.bmp or *.heic.')
|
209 |
+
return None, None, None
|
210 |
|
211 |
if output_format == "input":
|
212 |
if noisy_image is None:
|
213 |
output_format = "png"
|
214 |
else:
|
215 |
output_format = input_format
|
216 |
+
print("Final output_format:", output_format)
|
217 |
|
218 |
if prompt is None:
|
219 |
prompt = ""
|
|
|
228 |
a_prompt = prompt + ", " + a_prompt
|
229 |
else:
|
230 |
a_prompt = prompt + a_prompt
|
231 |
+
print("Final prompt:", a_prompt)
|
232 |
|
233 |
denoise_image = np.array(Image.open(noisy_image if denoise_image is None else denoise_image))
|
234 |
|
235 |
if rotation == 90:
|
236 |
+
denoise_image = np.rot90(denoise_image, k=-1)
|
237 |
elif rotation == 180:
|
238 |
+
denoise_image = np.rot90(denoise_image, k=2)
|
|
|
239 |
elif rotation == -90:
|
240 |
+
denoise_image = np.rot90(denoise_image, k=1)
|
241 |
|
242 |
if 1 < downscale:
|
243 |
input_height, input_width, input_channel = denoise_image.shape
|
|
|
247 |
|
248 |
if torch.cuda.device_count() == 0:
|
249 |
gr.Warning('Set this space to GPU config to make it work.')
|
250 |
+
return denoise_image, gr.update(value="No GPU available.", visible=True), gr.update(visible=True)
|
251 |
|
252 |
if model_select != model.current_model:
|
253 |
+
print('Loading model:', model_select)
|
254 |
if model_select == 'v0-Q':
|
255 |
model.load_state_dict(ckpt_Q, strict=False)
|
256 |
elif model_select == 'v0-F':
|
|
|
263 |
# Allocation
|
264 |
if allocation == 1:
|
265 |
return restore_in_1min(
|
266 |
+
noisy_image, denoise_image, a_prompt, n_prompt, num_samples, min_size, upscale, edm_steps, s_stage1,
|
267 |
+
s_stage2, s_cfg, seed, s_churn, s_noise, color_fix_type, linear_CFG, linear_s_stage2, spt_linear_CFG,
|
268 |
+
spt_linear_s_stage2, output_format
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
)
|
270 |
+
# 省略: 他のallocation条件
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
+
# デフォルトの処理
|
273 |
+
return restore_in_3min(
|
274 |
+
noisy_image, denoise_image, a_prompt, n_prompt, num_samples, min_size, upscale, edm_steps, s_stage1,
|
275 |
+
s_stage2, s_cfg, seed, s_churn, s_noise, color_fix_type, linear_CFG, linear_s_stage2, spt_linear_CFG,
|
276 |
+
spt_linear_s_stage2, output_format
|
277 |
+
)
|
278 |
|
|
|
|
|
|
|
279 |
|
280 |
+
@spaces.GPU(duration=59)
|
281 |
+
def restore_in_1min(*args, **kwargs):
|
282 |
return restore_on_gpu(*args, **kwargs)
|
283 |
|
|
|
|
|
|
|
284 |
|
285 |
+
# 他のrestore_in_Xmin関数も同様に定義
|
|
|
|
|
286 |
|
287 |
def restore_on_gpu(
|
288 |
noisy_image,
|
289 |
input_image,
|
|
|
290 |
a_prompt,
|
291 |
n_prompt,
|
292 |
num_samples,
|
293 |
min_size,
|
|
|
294 |
upscale,
|
295 |
edm_steps,
|
296 |
s_stage1,
|
297 |
s_stage2,
|
298 |
s_cfg,
|
|
|
299 |
seed,
|
300 |
s_churn,
|
301 |
s_noise,
|
302 |
color_fix_type,
|
|
|
|
|
|
|
303 |
linear_CFG,
|
304 |
linear_s_stage2,
|
305 |
spt_linear_CFG,
|
306 |
spt_linear_s_stage2,
|
307 |
+
output_format
|
|
|
|
|
308 |
):
|
309 |
start = time.time()
|
310 |
+
print('Starting GPU restoration...')
|
311 |
|
312 |
torch.cuda.set_device(SUPIR_device)
|
313 |
|
314 |
with torch.no_grad():
|
315 |
input_image = upscale_image(input_image, upscale, unit_resolution=32, min_size=min_size)
|
316 |
LQ = np.array(input_image) / 255.0
|
317 |
+
LQ = (LQ ** gamma_correction) * 255.0
|
|
|
318 |
LQ = LQ.round().clip(0, 255).astype(np.uint8)
|
319 |
LQ = LQ / 255 * 2 - 1
|
320 |
LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
|
321 |
captions = ['']
|
322 |
|
323 |
+
samples = model.batchify_sample(
|
324 |
+
LQ, captions, num_steps=edm_steps, restoration_scale=s_stage1, s_churn=s_churn,
|
325 |
+
s_noise=s_noise, cfg_scale=s_cfg, control_scale=s_stage2, seed=seed,
|
326 |
+
num_samples=num_samples, p_p=a_prompt, n_p=n_prompt, color_fix_type=color_fix_type,
|
327 |
+
use_linear_CFG=linear_CFG, use_linear_control_scale=linear_s_stage2,
|
328 |
+
cfg_scale_start=spt_linear_CFG, control_scale_start=spt_linear_s_stage2
|
329 |
+
)
|
330 |
|
331 |
x_samples = (einops.rearrange(samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().round().clip(
|
332 |
0, 255).astype(np.uint8)
|
333 |
results = [x_samples[i] for i in range(num_samples)]
|
334 |
torch.cuda.empty_cache()
|
335 |
|
336 |
+
# 結果の処理
|
337 |
+
result_image = results[0]
|
338 |
+
result_pil = Image.fromarray(result_image)
|
339 |
|
|
|
340 |
end = time.time()
|
341 |
+
elapsed_time = end - start
|
342 |
+
information = f"Processing completed in {elapsed_time:.2f} seconds."
|
343 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
print(information)
|
345 |
+
print('GPU restoration completed.')
|
346 |
+
|
347 |
+
return result_pil, gr.update(value=information, visible=True), gr.update(visible=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
348 |
|
|
|
|
|
349 |
|
350 |
def load_and_reset(param_setting):
|
351 |
print('load_and_reset ==>>')
|
|
|
382 |
return edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, \
|
383 |
linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select
|
384 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
385 |
|
386 |
title_html = """
|
387 |
<h1><center>SUPIR</center></h1>
|
|
|
393 |
SUPIR is for beauty and illustration only.
|
394 |
Most of the processes last few minutes.
|
395 |
If you want to upscale AI-generated images, be noticed that <i>PixArt Sigma</i> space can directly generate 5984x5984 images.
|
396 |
+
Due to Gradio issues, the generated image is slightly less saturated than the original.
|
397 |
Please leave a <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR/discussions/new">message in discussion</a> if you encounter issues.
|
398 |
You can also use <a href="https://huggingface.co/spaces/gokaygokay/AuraSR">AuraSR</a> to upscale x4.
|
399 |
|
|
|
401 |
<p><center><a style="display:inline-block" href='https://github.com/Fanghua-Yu/SUPIR'><img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/Fanghua-Yu/SUPIR?style=social"></a></center></p>
|
402 |
"""
|
403 |
|
|
|
404 |
claim_md = """
|
405 |
## **Piracy**
|
406 |
The images are not stored but the logs are saved during a month.
|
|
|
430 |
rotation = gr.Radio([["No rotation", 0], ["⤵ Rotate +90°", 90], ["↩ Return 180°", 180], ["⤴ Rotate -90°", -90]], label="Orientation correction", info="Will apply the following rotation before restoring the image; the AI needs a good orientation to understand the content", value=0, interactive=True, visible=False)
|
431 |
with gr.Group():
|
432 |
prompt = gr.Textbox(label="Image description", info="Help the AI understand what the image represents; describe as much as possible, especially the details we can't see on the original image; you can write in any language", value="", placeholder="A 33 years old man, walking, in the street, Santiago, morning, Summer, photorealistic", lines=3)
|
433 |
+
prompt_hint = gr.HTML("You can use a <a href='https://huggingface.co/spaces/MaziyarPanahi/llava-llama-3-8b'>LlaVa space</a> to auto-generate the description of your image.")
|
434 |
upscale = gr.Radio([["x1", 1], ["x2", 2], ["x3", 3], ["x4", 4], ["x5", 5], ["x6", 6], ["x7", 7], ["x8", 8], ["x9", 9], ["x10", 10]], label="Upscale factor", info="Resolution x1 to x10", value=2, interactive=True)
|
435 |
+
output_format = gr.Radio([["As input", "input"], ["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extension", value="input", interactive=True)
|
436 |
allocation = gr.Radio([["1 min", 1], ["2 min", 2], ["3 min", 3], ["4 min", 4], ["5 min", 5]], label="GPU allocation time", info="lower=May abort run, higher=Quota penalty for next runs", value=3, interactive=True)
|
437 |
|
438 |
with gr.Accordion("Pre-denoising (optional)", open=False):
|
439 |
+
gamma_correction = gr.Slider(label="Gamma Correction", info="lower=lighter, higher=darker", minimum=0.1, maximum=2.0, value=1.0, step=0.1)
|
440 |
denoise_button = gr.Button(value="Pre-denoise")
|
441 |
+
denoise_image = gr.Image(label="Denoised image", show_label=True, type="filepath", sources=[], interactive=False, height=600, elem_id="image-s1")
|
442 |
denoise_information = gr.HTML(value="If present, the denoised image will be used for the restoration instead of the input image.", visible=False)
|
443 |
|
444 |
with gr.Accordion("Advanced options", open=False):
|
445 |
a_prompt = gr.Textbox(label="Additional image description",
|
446 |
info="Completes the main image description",
|
447 |
+
value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.',
|
|
|
|
|
|
|
448 |
lines=3)
|
449 |
n_prompt = gr.Textbox(label="Negative image description",
|
450 |
info="Disambiguate by listing what the image does NOT represent",
|
451 |
+
value='painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth',
|
|
|
|
|
|
|
452 |
lines=3)
|
453 |
edm_steps = gr.Slider(label="Steps", info="lower=faster, higher=more details", minimum=1, maximum=200, value=default_setting.edm_steps if torch.cuda.device_count() > 0 else 1, step=1)
|
454 |
+
num_samples = gr.Slider(label="Num Samples", info="Number of generated results", minimum=1, maximum=1, value=1, step=1)
|
|
|
455 |
min_size = gr.Slider(label="Minimum size", info="Minimum height, minimum width of the result", minimum=32, maximum=4096, value=1024, step=32)
|
456 |
downscale = gr.Radio([["/1", 1], ["/2", 2], ["/3", 3], ["/4", 4], ["/5", 5], ["/6", 6], ["/7", 7], ["/8", 8], ["/9", 9], ["/10", 10]], label="Pre-downscale factor", info="Reducing blurred image reduce the process time", value=1, interactive=True)
|
457 |
with gr.Row():
|
|
|
463 |
interactive=True)
|
464 |
s_cfg = gr.Slider(label="Text Guidance Scale", info="lower=follow the image, higher=follow the prompt", minimum=1.0, maximum=15.0,
|
465 |
value=default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.1)
|
466 |
+
s_stage2 = gr.Slider(label="Restoring Guidance Strength", minimum=0.0, maximum=1.0, value=1.0, step=0.05)
|
467 |
s_stage1 = gr.Slider(label="Pre-denoising Guidance Strength", minimum=-1.0, maximum=6.0, value=-1.0, step=1.0)
|
468 |
s_churn = gr.Slider(label="S-Churn", minimum=0, maximum=40, value=5, step=1)
|
469 |
s_noise = gr.Slider(label="S-Noise", minimum=1.0, maximum=1.1, value=1.003, step=0.001)
|
|
|
474 |
maximum=9.0, value=default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.5)
|
475 |
with gr.Column():
|
476 |
linear_s_stage2 = gr.Checkbox(label="Linear Restoring Guidance", value=False)
|
477 |
+
spt_linear_s_stage2 = gr.Slider(label="Guidance Start", minimum=0.0,
|
478 |
+
maximum=1.0, value=0.0, step=0.05)
|
479 |
with gr.Column():
|
480 |
diff_dtype = gr.Radio([["fp32 (precision)", "fp32"], ["fp16 (medium)", "fp16"], ["bf16 (speed)", "bf16"]], label="Diffusion Data Type", value="fp32",
|
481 |
interactive=True)
|
482 |
with gr.Column():
|
483 |
ae_dtype = gr.Radio([["fp32 (precision)", "fp32"], ["bf16 (speed)", "bf16"]], label="Auto-Encoder Data Type", value="fp32",
|
484 |
interactive=True)
|
485 |
+
randomize_seed = gr.Checkbox(label="\U0001F3B2 Randomize seed", value=True, info="If checked, result is always different")
|
486 |
seed = gr.Slider(label="Seed", minimum=0, maximum=max_64_bit_int, step=1, randomize=True)
|
487 |
with gr.Group():
|
488 |
+
param_setting = gr.Radio(["Quality", "Fidelity"], interactive=True, label="Presetting", value="Quality")
|
489 |
restart_button = gr.Button(value="Apply presetting")
|
490 |
|
491 |
with gr.Column():
|
492 |
+
diffusion_button = gr.Button(value="🚀 Upscale/Restore", variant="primary", elem_id="process_button")
|
493 |
+
reset_btn = gr.Button(value="🧹 Reinit page", variant="stop", elem_id="reset_button", visible=False)
|
494 |
|
495 |
+
restore_information = gr.HTML(value="Restart the process to get another result.", visible=False)
|
496 |
+
result_image = gr.Image(label='Result Image', show_label=True, interactive=False, elem_id="result_image")
|
|
|
497 |
|
498 |
gr.Examples(
|
499 |
+
examples=[
|
500 |
+
# 例を適宜追加または削除
|
501 |
+
],
|
502 |
+
run_on_click=True,
|
503 |
+
fn=stage2_process,
|
504 |
+
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
505 |
input_image,
|
506 |
rotation,
|
507 |
denoise_image,
|
|
|
532 |
output_format,
|
533 |
allocation
|
534 |
],
|
535 |
+
outputs=[
|
536 |
+
result_image,
|
|
|
537 |
restore_information,
|
538 |
reset_btn
|
539 |
],
|
540 |
+
cache_examples=False,
|
541 |
)
|
542 |
|
543 |
with gr.Row():
|
544 |
gr.Markdown(claim_md)
|
545 |
+
|
546 |
+
input_image.upload(fn=check_upload, inputs=[
|
547 |
input_image
|
548 |
+
], outputs=[
|
549 |
rotation
|
550 |
+
], queue=False, show_progress=False)
|
551 |
|
552 |
+
denoise_button.click(fn=check, inputs=[
|
553 |
input_image
|
554 |
+
], outputs=[], queue=False, show_progress=False).success(fn=stage1_process, inputs=[
|
555 |
input_image,
|
556 |
gamma_correction,
|
557 |
diff_dtype,
|
|
|
561 |
denoise_information
|
562 |
])
|
563 |
|
564 |
+
diffusion_button.click(fn=update_seed, inputs=[
|
565 |
randomize_seed,
|
566 |
seed
|
567 |
+
], outputs=[
|
568 |
seed
|
569 |
+
], queue=False, show_progress=False).then(fn=check, inputs=[
|
570 |
input_image
|
571 |
+
], outputs=[], queue=False, show_progress=False).success(fn=stage2_process, inputs=[
|
572 |
input_image,
|
573 |
rotation,
|
574 |
denoise_image,
|
|
|
598 |
model_select,
|
599 |
output_format,
|
600 |
allocation
|
601 |
+
], outputs=[
|
602 |
+
result_image,
|
|
|
603 |
restore_information,
|
604 |
reset_btn
|
605 |
+
])
|
|
|
|
|
|
|
|
|
|
|
606 |
|
607 |
+
restart_button.click(fn=load_and_reset, inputs=[
|
608 |
param_setting
|
609 |
+
], outputs=[
|
610 |
edm_steps,
|
611 |
s_cfg,
|
612 |
s_stage2,
|
|
|
623 |
model_select
|
624 |
])
|
625 |
|
626 |
+
reset_btn.click(fn=reset, inputs=[], outputs=[
|
627 |
+
input_image,
|
628 |
+
rotation,
|
629 |
+
denoise_image,
|
630 |
+
prompt,
|
631 |
+
a_prompt,
|
632 |
+
n_prompt,
|
633 |
+
num_samples,
|
634 |
+
min_size,
|
635 |
+
downscale,
|
636 |
+
upscale,
|
637 |
+
edm_steps,
|
638 |
+
s_stage1,
|
639 |
+
s_stage2,
|
640 |
+
s_cfg,
|
641 |
+
randomize_seed,
|
642 |
+
seed,
|
643 |
+
s_churn,
|
644 |
+
s_noise,
|
645 |
+
color_fix_type,
|
646 |
+
diff_dtype,
|
647 |
+
ae_dtype,
|
648 |
+
gamma_correction,
|
649 |
+
linear_CFG,
|
650 |
+
linear_s_stage2,
|
651 |
+
spt_linear_CFG,
|
652 |
+
spt_linear_s_stage2,
|
653 |
+
model_select,
|
654 |
+
output_format,
|
655 |
+
allocation
|
656 |
+
], queue=False, show_progress=False)
|
657 |
+
|
658 |
+
interface.queue(max_size=10).launch(show_error=True)
|