import torch import numpy as np import cv2 from transformers import SamModel, SamProcessor import gradio as gr # Load the SAM model and processor from Hugging Face model_id = "facebook/sam-vit-huge" device = "cuda" if torch.cuda.is_available() else "cpu" sam = SamModel.from_pretrained(model_id).to(device) processor = SamProcessor.from_pretrained(model_id) def segment_rocks(image): # Preprocess the image inputs = processor(image, return_tensors="pt").to(device) # Generate image embeddings with torch.no_grad(): image_embeddings = sam.get_image_embeddings(inputs["pixel_values"]) # Generate masks masks = [] for i in range(3): # Generate multiple masks inputs = processor( image, input_points=None, return_tensors="pt", input_boxes=[[[0, 0, image.shape[1], image.shape[0]]]], ).to(device) with torch.no_grad(): outputs = sam( input_points=inputs["input_points"], input_boxes=inputs["input_boxes"], image_embeddings=image_embeddings, multimask_output=True, ) masks.extend(outputs.pred_masks.squeeze().cpu().numpy()) return masks def compute_rock_properties(mask): # Find contours of the mask contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) properties = [] for contour in contours: # Compute area area = cv2.contourArea(contour) # Compute perimeter perimeter = cv2.arcLength(contour, True) # Compute circularity circularity = 4 * np.pi * area / (perimeter ** 2) if perimeter > 0 else 0 # Fit an ellipse to get major and minor axes if len(contour) >= 5: ellipse = cv2.fitEllipse(contour) major_axis = max(ellipse[1]) minor_axis = min(ellipse[1]) aspect_ratio = major_axis / minor_axis if minor_axis > 0 else 0 else: major_axis = minor_axis = aspect_ratio = 0 properties.append({ 'area': area, 'perimeter': perimeter, 'circularity': circularity, 'major_axis': major_axis, 'minor_axis': minor_axis, 'aspect_ratio': aspect_ratio }) return properties def process_image(input_image): # Convert to RGB if needed if input_image.shape[2] == 4: # RGBA input_image = cv2.cvtColor(input_image, cv2.COLOR_RGBA2RGB) elif len(input_image.shape) == 2: # Grayscale input_image = cv2.cvtColor(input_image, cv2.COLOR_GRAY2RGB) masks = segment_rocks(input_image) results = [] for i, mask in enumerate(masks): properties = compute_rock_properties(mask) # Visualize the segmentation masked_image = input_image.copy() masked_image[mask] = (masked_image[mask] * 0.7 + np.array([255, 0, 0]) * 0.3).astype(np.uint8) results.append((masked_image, f"Rock {i+1} properties: {properties}")) return results # Gradio interface iface = gr.Interface( fn=process_image, inputs=gr.Image(type="numpy"), outputs=[gr.Image(type="numpy"), gr.Textbox(label="Properties")] * 3, title="Rock Segmentation using SAM", description="Upload an image to segment rocks and compute their properties." ) # Launch the interface iface.launch()