Spaces:
Running
on
Zero
Running
on
Zero
!pip install "huggingface_hub[hf_transfer]" | |
!pip install -U "huggingface_hub[cli]" | |
!pip install gradio trimesh scipy | |
!HF_HUB_ENABLE_HF_TRANSFER=1 | |
!git clone https://github.com/PaulBorneP/MESA.git | |
!cd MESA | |
!mkdir weights | |
!huggingface-cli download NewtNewt/MESA --local-dir weights | |
import torch | |
from MESA.pipeline_terrain import TerrainDiffusionPipeline | |
import sys | |
import gradio as gr | |
import numpy as np | |
import trimesh | |
import tempfile | |
import torch | |
from scipy.spatial import Delaunay | |
sys.path.append('MESA/') | |
pipe = TerrainDiffusionPipeline.from_pretrained("./weights", torch_dtype=torch.float16) | |
pipe.to("cuda") | |
def generate_terrain(prompt, num_inference_steps, guidance_scale, seed, crop_size, prefix): | |
"""Generates terrain data (RGB and elevation) from a text prompt.""" | |
if prefix and not prefix.endswith(' '): | |
prefix += ' ' # Ensure prefix ends with a space | |
full_prompt = prefix + prompt | |
generator = torch.Generator("cuda").manual_seed(seed) | |
image, dem = pipe(full_prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=generator) | |
# Center crop the image and dem | |
h, w, c = image[0].shape | |
start_h = (h - crop_size) // 2 | |
start_w = (w - crop_size) // 2 | |
end_h = start_h + crop_size | |
end_w = start_w + crop_size | |
cropped_image = image[0][start_h:end_h, start_w:end_w, :] | |
cropped_dem = dem[0][start_h:end_h, start_w:end_w, :] | |
return (255 * cropped_image).astype(np.uint8), 500*cropped_dem.mean(-1) | |
def create_3d_mesh(rgb, elevation): | |
"""Creates a 3D mesh from RGB and elevation data.""" | |
x, y = np.meshgrid(np.arange(elevation.shape[1]), np.arange(elevation.shape[0])) | |
points = np.stack([x.flatten(), y.flatten()], axis=-1) | |
tri = Delaunay(points) | |
vertices = np.stack([x.flatten(), y.flatten(), elevation.flatten()], axis=-1) | |
faces = tri.simplices | |
mesh = trimesh.Trimesh(vertices=vertices, faces=faces, vertex_colors=rgb.reshape(-1, 3)) | |
return mesh | |
def generate_and_display(prompt, num_inference_steps, guidance_scale, seed, crop_size, prefix): | |
"""Generates terrain and displays it as a 3D model.""" | |
rgb, elevation = generate_terrain(prompt, num_inference_steps, guidance_scale, seed, crop_size, prefix) | |
mesh = create_3d_mesh(rgb, elevation) | |
with tempfile.NamedTemporaryFile(suffix=".obj", delete=False) as temp_file: | |
mesh.export(temp_file.name) | |
file_path = temp_file.name | |
return file_path | |
theme = gr.themes.Soft(primary_hue="red", secondary_hue="red", font=['arial']) | |
with gr.Blocks(theme=theme) as demo: | |
with gr.Column(elem_classes="header"): | |
gr.Markdown("# MESA: Text-Driven Terrain Generation Using Latent Diffusion and Global Copernicus Data") | |
gr.Markdown("### Paul Borne–Pons, Mikolaj Czerkawski, Rosalie Martin, Romain Rouffet") | |
gr.Markdown('[[GitHub](https://github.com/PaulBorneP/MESA)] [[Model](https://huggingface.co/NewtNewt/MESA)] [[Dataset](https://huggingface.co/datasets/Major-TOM/Core-DEM)]') | |
# Abstract Section | |
with gr.Column(elem_classes="abstract"): | |
gr.Markdown("MESA is a novel generative model based on latent denoising diffusion capable of generating 2.5D representations of terrain based on the text prompt conditioning supplied via natural language. The model produces two co-registered modalities of optical and depth maps.") # Replace with your abstract text | |
gr.Markdown("This is a test version of the demo app. Please be aware that MESA supports primarily complex, mountainous terrains as opposed to flat land") | |
gr.Markdown("The generated image is quite large, so for the full resolution (768) it might take a while to load the surface") | |
with gr.Row(): | |
prompt_input = gr.Textbox(lines=2, placeholder="Enter a terrain description...") | |
generate_button = gr.Button("Generate Terrain", variant="primary") | |
model_output = gr.Model3D( | |
camera_position=[90, 180, 512] | |
) | |
with gr.Accordion("Advanced Options", open=False) as advanced_options: | |
num_inference_steps_slider = gr.Slider(minimum=10, maximum=1000, step=10, value=50, label="Inference Steps") | |
guidance_scale_slider = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, value=7.5, label="Guidance Scale") | |
seed_number = gr.Number(value=6378, label="Seed") | |
crop_size_slider = gr.Slider(minimum=128, maximum=768, step=64, value=512, label="Crop Size") | |
prefix_textbox = gr.Textbox(label="Prompt Prefix", value="A Sentinel-2 image of ") | |
generate_button.click( | |
fn=generate_and_display, | |
inputs=[prompt_input, num_inference_steps_slider, guidance_scale_slider, seed_number, crop_size_slider, prefix_textbox], | |
outputs=model_output, | |
) | |
if __name__ == "__main__": | |
demo.launch(debug=True, | |
share=True) |