Spaces:
Runtime error
Runtime error
File size: 7,713 Bytes
159c049 b932645 159c049 b932645 1c74133 b932645 1c74133 b932645 1c74133 b932645 1c74133 159c049 1c74133 159c049 b932645 1c74133 b932645 1c74133 b932645 1c74133 159c049 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# this code is largely inspired by https://huggingface.co/spaces/hysts/ControlNet-with-Anything-v4/blob/main/app_scribble_interactive.py
# Thank you, hysts!
import sys
sys.path.append('./src/ControlNetInpaint/')
# functionality based on https://github.com/mikonvergence/ControlNetInpaint
import gradio as gr
#import torch
#from torch import autocast // only for GPU
from PIL import Image
import numpy as np
from io import BytesIO
import os
# Usage
# 1. Upload image or fill with white
# 2. Sketch the mask (image->[image,mask]
# 3. Sketch the content of the mask
# Global Storage
CURRENT_IMAGE={'image' : None,
'mask' : None,
'guide' : None
}
HEIGHT,WIDTH=512,512
## SETUP PIPE
from diffusers import StableDiffusionInpaintPipeline, ControlNetModel, UniPCMultistepScheduler
from src.pipeline_stable_diffusion_controlnet_inpaint import *
from diffusers.utils import load_image
from controlnet_aux import HEDdetector
hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')
controlnet = ControlNetModel.from_pretrained(
"fusing/stable-diffusion-v1-5-controlnet-scribble", torch_dtype=torch.float16
)
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
if torch.cuda.is_available():
# Remove if you do not have xformers installed
# see https://huggingface.co/docs/diffusers/v0.13.0/en/optimization/xformers#installing-xformers
# for installation instructions
pipe.enable_xformers_memory_efficient_attention()
pipe.to('cuda')
# Functions
def get_guide(image):
return hed(image,scribble=True)
def create_demo(max_images=12, default_num_images=3):
with gr.Blocks(theme=gr.themes.Default(font=[gr.themes.GoogleFont("IBM Plex Mono"), "ui-monospace","monospace"])) as demo:
gr.Markdown('# Cut and Sketch ✂️▶️✏️')
with gr.Accordion('Instructions', open=False):
gr.Markdown('## Cut ✂️')
gr.Markdown('1. Upload your image below')
gr.Markdown('2. **Draw the mask** for the region you want changed (Cut ✂️)')
gr.Markdown('3. Click `Set Mask` when it is ready!')
gr.Markdown('## Sketch ✏️')
gr.Markdown('4. Now, you can **sketch a replacement** object! (Sketch ✏️)')
gr.Markdown('5. (You can also provide a **text prompt** if you want)')
gr.Markdown('6. 🔮 Click `Generate` when ready! ')
with gr.Row() as main_blocks:
with gr.Column() as step_1:
gr.Markdown('### Mask Input')
input_image = gr.Image(source='upload',
shape=[HEIGHT,WIDTH],
type='numpy',
elem_id="image-upload",
label='Mask Draw (Cut!)',
tool='sketch',
brush_radius=80)
mask_button = gr.Button(label='Set Mask', value='Set Mask',full_width=False)
with gr.Column(visible=False) as step_2:
gr.Markdown('### Sketch Input')
sketch_image = gr.Image(source='upload',
shape=[HEIGHT,WIDTH],
type='numpy',
label='Fill Draw (Sketch!)',
tool='sketch',
brush_radius=15)
run_button = gr.Button(label='Generate', value='Generate')
prompt = gr.Textbox(label='Prompt')
with gr.Column() as output_step:
gr.Markdown('### Output')
output_image = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
)
with gr.Accordion('Advanced options', open=False):
num_steps = gr.Slider(label='Steps',
minimum=1,
maximum=100,
value=20,
step=1)
text_scale = gr.Slider(label='Text Guidance Scale',
minimum=0.1,
maximum=30.0,
value=7.5,
step=0.1)
seed = gr.Slider(label='Seed',
minimum=-1,
maximum=2147483647,
step=1,
randomize=True)
sketch_scale = gr.Slider(label='Sketch Guidance Scale',
minimum=0.0,
maximum=1.0,
value=1.0,
step=0.05)
inputs = [
sketch_image,
prompt,
num_steps,
text_scale,
sketch_scale,
seed
]
# STEP 1: Set Mask
def set_mask(image):
img=image['image'][...,:3]
mask=1*(image['mask'][...,:3]>0)
# save vars
CURRENT_IMAGE['image']=img
CURRENT_IMAGE['mask']=mask
guide=get_guide(img)
CURRENT_IMAGE['guide']=np.array(guide)
guide=255-np.asarray(guide)
seg_img = guide*(1-mask) + mask*192
preview = img * (seg_img==255)
vis_image=(preview/2).astype(seg_img.dtype) + seg_img * (seg_img!=255)
return {input_image : image['image'],
sketch_image : vis_image,
step_1: gr.update(visible=False),
step_2: gr.update(visible=True)
}
# STEP 2: Generate
def generate(image,
prompt,
num_steps,
text_scale,
sketch_scale,
seed):
sketch=(255*(image['mask'][...,:3]>0)).astype(CURRENT_IMAGE['image'].dtype)
mask=CURRENT_IMAGE['mask']
CURRENT_IMAGE['guide']=(CURRENT_IMAGE['guide']*(mask==0) + sketch*(mask!=0)).astype(CURRENT_IMAGE['image'].dtype)
mask_img=255*CURRENT_IMAGE['mask'].astype(CURRENT_IMAGE['image'].dtype)
new_image = pipe(
prompt,
num_inference_steps=num_steps,
guidance_scale=text_scale,
generator=torch.manual_seed(seed),
image=Image.fromarray(CURRENT_IMAGE['image']),
control_image=Image.fromarray(CURRENT_IMAGE['guide']),
controlnet_conditioning_scale=sketch_scale,
mask_image=Image.fromarray(mask_img)
).images#[0]
return {output_image : new_image,
step_1: gr.update(visible=True),
step_2: gr.update(visible=False)
}
mask_button.click(fn=set_mask, inputs=[input_image], outputs=[input_image, sketch_image, step_1,step_2])
run_button.click(fn=generate, inputs=inputs, outputs=[output_image, step_1,step_2])
return demo
if __name__ == '__main__':
demo = create_demo()
demo.queue().launch() |