# this code is largely inspired by https://huggingface.co/spaces/hysts/ControlNet-with-Anything-v4/blob/main/app_scribble_interactive.py # Thank you, hysts! import sys sys.path.append('./src/ControlNetInpaint/') # functionality based on https://github.com/mikonvergence/ControlNetInpaint import gradio as gr #import torch #from torch import autocast // only for GPU from PIL import Image import numpy as np from io import BytesIO import os # Usage # 1. Upload image or fill with white # 2. Sketch the mask (image->[image,mask] # 3. Sketch the content of the mask # Global Storage CURRENT_IMAGE={'image' : None, 'mask' : None, 'guide' : None } HEIGHT,WIDTH=512,512 ## SETUP PIPE from diffusers import StableDiffusionInpaintPipeline, ControlNetModel, UniPCMultistepScheduler from src.pipeline_stable_diffusion_controlnet_inpaint import * from diffusers.utils import load_image from controlnet_aux import HEDdetector hed = HEDdetector.from_pretrained('lllyasviel/ControlNet') controlnet = ControlNetModel.from_pretrained( "fusing/stable-diffusion-v1-5-controlnet-scribble", torch_dtype=torch.float16 ) pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16 ) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) if torch.cuda.is_available(): # Remove if you do not have xformers installed # see https://huggingface.co/docs/diffusers/v0.13.0/en/optimization/xformers#installing-xformers # for installation instructions pipe.enable_xformers_memory_efficient_attention() pipe.to('cuda') # Functions def get_guide(image): return hed(image,scribble=True) def generate(image, prompt, num_steps, text_scale, sketch_scale, seed): sketch=(255*(image['mask'][...,:3]>0)).astype(CURRENT_IMAGE['image'].dtype) mask=CURRENT_IMAGE['mask'] CURRENT_IMAGE['guide']=(CURRENT_IMAGE['guide']*(mask==0) + sketch*(mask!=0)).astype(CURRENT_IMAGE['image'].dtype) mask_img=255*CURRENT_IMAGE['mask'].astype(CURRENT_IMAGE['image'].dtype) new_image = pipe( prompt, num_inference_steps=num_steps, guidance_scale=text_scale, generator=torch.manual_seed(seed), image=Image.fromarray(CURRENT_IMAGE['image']), control_image=Image.fromarray(CURRENT_IMAGE['guide']), controlnet_conditioning_scale=sketch_scale, mask_image=Image.fromarray(mask_img) ).images#[0] return new_image def create_demo(max_images=12, default_num_images=3): with gr.Blocks(theme=gr.themes.Default(font=[gr.themes.GoogleFont("IBM Plex Mono"), "ui-monospace","monospace"])) as demo: gr.Markdown('## Cut and Sketch ✂️▶️✏️') with gr.Column() as step_1: gr.Markdown('**Start Here**') gr.Markdown('1. Upload your image below') gr.Markdown('2. **Draw the mask** for the region you want changed (Cut ✂️)') input_image = gr.Image(source='upload', shape=[HEIGHT,WIDTH], type='numpy', label='Mask Draw (Cut!)', tool='sketch', brush_radius=80) gr.Markdown('3. Click `Set Mask` when it is ready!') mask_button = gr.Button(label='Set Mask', value='Set Mask') with gr.Column(visible=False) as step_2: gr.Markdown('4. Now, you can **sketch a replacement** object! (Sketch ✏️)') sketch_image = gr.Image(source='upload', shape=[HEIGHT,WIDTH], type='numpy', label='Fill Draw (Sketch!)', tool='sketch', brush_radius=20) gr.Markdown('5. (You can also provide a **text prompt** if you want)') prompt = gr.Textbox(label='Prompt') gr.Markdown('6. 🔮 Click `Generate` when ready! ') run_button = gr.Button(label='Generate', value='Generate') output_image = gr.Gallery( label="Generated images", visible=False, show_label=False, elem_id="gallery", )#.style(grid=(1, 2)) with gr.Accordion('Advanced options', open=False): num_steps = gr.Slider(label='Steps', minimum=1, maximum=100, value=20, step=1) text_scale = gr.Slider(label='Text Guidance Scale', minimum=0.1, maximum=30.0, value=7.5, step=0.1) seed = gr.Slider(label='Seed', minimum=-1, maximum=2147483647, step=1, randomize=True) sketch_scale = gr.Slider(label='Sketch Guidance Scale', minimum=0.0, maximum=1.0, value=1.0, step=0.05) inputs = [ sketch_image, prompt, num_steps, text_scale, sketch_scale, seed ] def set_mask(image): img=image['image'][...,:3] mask=1*(image['mask'][...,:3]>0) # save vars CURRENT_IMAGE['image']=img CURRENT_IMAGE['mask']=mask guide=get_guide(img) CURRENT_IMAGE['guide']=np.array(guide) guide=255-np.asarray(guide) seg_img = guide*(1-mask) + mask*192 preview = img * (seg_img==255) vis_image=(preview/2).astype(seg_img.dtype) + seg_img * (seg_img!=255) return {input_image : image['image'], sketch_image : vis_image, step_2: gr.update(visible=True)} mask_button.click(fn=set_mask, inputs=[input_image], outputs=[input_image, sketch_image,step_2]) run_button.click(fn=generate, inputs=inputs, outputs=output_image) return demo if __name__ == '__main__': demo = create_demo() demo.queue().launch()