File size: 20,418 Bytes
b4942cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import logging
import os
from datetime import datetime
from importlib import import_module
from typing import List, Union, Callable, Optional, Dict

import PIL.Image
import deepspeed
import torch
from torch import Tensor
from torch.nn import init
from transformers import PreTrainedModel, AutoConfig, AutoModel, AutoTokenizer, AutoModelForCausalLM
from transformers.cache_utils import HybridCache
from transformers.generation.utils import GenerateOutput
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled, deepspeed_config

from ovis.model.configuration_ovis import OvisConfig
from ovis.model.conversation_formatter import ConversationFormatter
from ovis.util.constants import IGNORE_ID, BEGIN_LINE, END_LINE, IMAGE_ATOM_ID, IMAGE_INDICATOR_IDS, \
    IMAGE_TOKEN_ID
from ovis.util.utils import rank0_print


class VisualEmbedding(torch.nn.Embedding):
    def forward(self, visual_tokens: Tensor) -> Tensor:
        if visual_tokens.dtype in [torch.int8, torch.int16, torch.int32, torch.int64, torch.long]:
            return super().forward(visual_tokens)
        return torch.matmul(visual_tokens, self.weight)

    def reset_parameters(self, mean=0., std=1.) -> None:
        init.normal_(self.weight, mean=mean, std=std)
        self._fill_padding_idx_with_zero()


class OvisPreTrainedModel(PreTrainedModel):
    config_class = OvisConfig
    base_model_prefix = "ovis"


class Ovis(OvisPreTrainedModel):

    def __init__(self, config: OvisConfig, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)
        if kwargs.get('train_from_scratch'):
            self.llm = kwargs['llm']
            self.generation_config = self.llm.generation_config
            self.config.llm_config = self.llm.config
            self.config.hidden_size = self.llm.config.hidden_size  # for deepspeed auto configuration
            self.text_tokenizer = kwargs['text_tokenizer']
            self.visual_tokenizer = kwargs['visual_tokenizer']
            self.config.visual_tokenizer_config = self.visual_tokenizer.config
        else:
            attn_kwargs = dict()
            if self.config.llm_attn_implementation:
                attn_kwargs['attn_implementation'] = self.config.llm_attn_implementation
            self.llm = AutoModelForCausalLM.from_config(self.config.llm_config, **attn_kwargs)
            assert self.config.hidden_size == self.llm.config.hidden_size, "hidden size mismatch"
            self.text_tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path)
            self.visual_tokenizer = AutoModel.from_config(self.config.visual_tokenizer_config,
                                                          image_processor_name_or_path=self.config.name_or_path)

        # initialize vte
        if is_deepspeed_zero3_enabled():
            with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
                self.vte = VisualEmbedding(self.config.visual_tokenizer_config.vocab_size, self.config.hidden_size)
        else:
            self.vte = VisualEmbedding(self.config.visual_tokenizer_config.vocab_size, self.config.hidden_size,
                                       device=self.visual_tokenizer.device, dtype=self.visual_tokenizer.dtype)

        def _merge_modules(modules_list: tuple):
            merged_modules = []
            for modules in modules_list:
                merged_modules.extend(modules if modules else [])
            return merged_modules

        self._no_split_modules = _merge_modules((self.llm._no_split_modules, self.visual_tokenizer._no_split_modules))
        self._skip_keys_device_placement = self.llm._skip_keys_device_placement
        self._keep_in_fp32_modules = _merge_modules(
            (self.llm._keep_in_fp32_modules, self.visual_tokenizer._keep_in_fp32_modules))
        self.is_parallelizable = all((self.llm.is_parallelizable, self.visual_tokenizer.is_parallelizable))
        self.supports_gradient_checkpointing = all(
            (self.llm.supports_gradient_checkpointing, self.visual_tokenizer.supports_gradient_checkpointing))
        self._supports_flash_attn_2 = all(
            (self.llm._supports_flash_attn_2, self.visual_tokenizer._supports_flash_attn_2))
        self._supports_sdpa = all((self.llm._supports_sdpa, self.visual_tokenizer._supports_sdpa))

    def get_text_tokenizer(self):
        return self.text_tokenizer

    def get_visual_tokenizer(self):
        return self.visual_tokenizer

    def tie_weights(self):
        if not self.config.disable_tie_weight:
            self.get_llm().tie_weights()

    def re_init_vte(self, mean, std):
        vte = self.get_vte()
        rank0_print(BEGIN_LINE)
        rank0_print(f'[{datetime.now()}] Before re-initialization of vte: ')
        with deepspeed.zero.GatheredParameters([vte.weight]):
            rank0_print(f'vte.weight: {vte.weight}')
        with deepspeed.zero.GatheredParameters([vte.weight], modifier_rank=0):
            if not is_deepspeed_zero3_enabled() or deepspeed.comm.get_rank() == 0:
                vte.reset_parameters(mean, std)
        rank0_print(f'[{datetime.now()}] After re-initialization of vte:')
        with deepspeed.zero.GatheredParameters([vte.weight]):
            rank0_print(f'vte.weight: {vte.weight}')
        rank0_print(END_LINE)

    def get_monitor_tensors(self):
        monitor_tensors = dict(
            wte=self.get_wte().weight,
            lm_head=self.get_lm_head().weight,
            vte=self.get_vte().weight
        )
        monitor_tensors.update(
            {f'visual_tokenizer_{k}': v for k, v in self.get_visual_tokenizer().get_monitor_tensors().items()})
        return monitor_tensors

    def get_lm_head(self):
        return self.get_llm().get_output_embeddings()

    def get_llm(self):
        return self.llm

    def get_vte(self):
        return self.vte

    def get_wte(self):
        return self.llm.get_input_embeddings()

    def get_conversation_formatter(self) -> ConversationFormatter:
        if getattr(self, 'conversation_formatter', None) is None:
            self.conversation_formatter = getattr(import_module(".conversation_formatter", __package__),
                                                  self.config.conversation_formatter_class)(self.text_tokenizer)
        return self.conversation_formatter

    def forward(
        self,
        input_ids: torch.Tensor,
        attention_mask: torch.Tensor,
        labels: Optional[torch.Tensor],
        pixel_values: List[Optional[torch.Tensor]],
        **kwargs
    ):
        assert self.training, "`forward` can only be used in training. For inference, use `generate`."
        _, inputs_embeds, labels, attention_mask = self.merge_multimodal(
            text_input_ids=input_ids,
            text_attention_masks=attention_mask,
            text_labels=labels,
            pixel_values=pixel_values
        )
        return self.llm(inputs_embeds=inputs_embeds, labels=labels, attention_mask=attention_mask, **kwargs)

    def merge_multimodal(
        self,
        text_input_ids: torch.Tensor,
        text_attention_masks: torch.Tensor,
        text_labels: Optional[torch.Tensor],
        pixel_values: List[Optional[torch.Tensor]]
    ):
        input_device = text_input_ids.device
        visual_vocab_szie = self.get_visual_tokenizer().config.vocab_size
        visual_indicator_embeds = self.get_vte()(
            torch.tensor(
                list(range(visual_vocab_szie - 5, visual_vocab_szie)),
                dtype=torch.long,
                device=self.get_visual_tokenizer().device
            )
        ).to(device=input_device)

        if self.training:
            # When training, to be compatible with deepspeed zero, each sample has to include pixel_value tensor.
            # For text-only sample, one can simply use a full zero tensor as pixel_value, which will be ignored
            # (see below in this function); so, the gradient will not be affected.
            num_images = [x.shape[0] for x in pixel_values]
            visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values], dim=0))
            visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device),
                                        split_size_or_sections=num_images, dim=0)
            visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1).to(device=input_device),
                                           split_size_or_sections=num_images, dim=0)
            visual_labels = [torch.full(x.shape, IGNORE_ID, dtype=torch.long, device=input_device) for x in
                             visual_input_ids]
        else:
            # When inference, sample can include only text with `None` pixel_value
            num_images = [x.shape[0] if x is not None else 0 for x in pixel_values]
            if sum(num_images) > 0:
                visual_tokens = self.visual_tokenizer(torch.cat([x for x in pixel_values if x is not None], dim=0))
                visual_embeds = torch.split(self.get_vte()(visual_tokens).to(dtype=self.dtype, device=input_device),
                                            split_size_or_sections=num_images, dim=0)
                visual_input_ids = torch.split(torch.argmax(visual_tokens, dim=-1).to(device=input_device),
                                               split_size_or_sections=num_images, dim=0)
                visual_labels = [torch.full(x.shape, IGNORE_ID, dtype=torch.long, device=input_device) for x in
                                 visual_input_ids]
            else:
                # just placeholders
                visual_embeds = [None] * len(num_images)
                visual_input_ids = [None] * len(num_images)
                visual_labels = [None] * len(num_images)
            # just placeholders
            text_labels = torch.full(text_input_ids.shape, IGNORE_ID, dtype=torch.long, device=input_device)

        input_embeds = []
        attention_masks = []
        labels = []
        for text_input_id, text_label, text_attention_mask, visual_embed, visual_input_id, visual_label in zip(
                text_input_ids, text_labels, text_attention_masks, visual_embeds, visual_input_ids, visual_labels
        ):
            placeholder_token_mask = torch.lt(text_input_id, 0)
            text_embed = self.get_wte()(torch.masked_fill(text_input_id, placeholder_token_mask, 0))
            for i, indicator_id in enumerate(IMAGE_INDICATOR_IDS):
                text_embed[text_input_id == indicator_id] = visual_indicator_embeds[i]
            image_atom_positions = torch.where(torch.eq(text_input_id, IMAGE_ATOM_ID))[0].tolist()
            if len(image_atom_positions) > 0:
                input_embed_parts = []
                attention_mask_parts = []
                label_parts = []
                prev_image_atom_position = -1
                for index, image_atom_position in enumerate(image_atom_positions):
                    input_embed_parts.append(
                        text_embed[prev_image_atom_position + 1:image_atom_position, :])
                    label_parts.append(
                        text_label[prev_image_atom_position + 1:image_atom_position])
                    attention_mask_parts.append(
                        text_attention_mask[prev_image_atom_position + 1:image_atom_position])
                    input_embed_parts.append(visual_embed[index])
                    attention_mask_parts.append(
                        torch.ones_like(visual_label[index], dtype=torch.bool))
                    label_parts.append(visual_label[index])
                    prev_image_atom_position = image_atom_position
                if prev_image_atom_position + 1 < text_input_id.shape[0]:
                    input_embed_parts.append(
                        text_embed[prev_image_atom_position + 1:, :])
                    attention_mask_parts.append(
                        text_attention_mask[prev_image_atom_position + 1:])
                    label_parts.append(
                        text_label[prev_image_atom_position + 1:])
                input_embed = torch.cat(input_embed_parts, dim=0)
                attention_mask = torch.cat(attention_mask_parts, dim=0)
                label = torch.cat(label_parts, dim=0)
            else:
                input_embed = text_embed
                attention_mask = text_attention_mask
                label = text_label
                if self.training:
                    # Make visual_embed & visual_indicator_embeds involved in the backward graph,
                    # to be compatible with deepspeed zero and ddp.
                    input_embed += torch.sum(visual_embed * 0.0) + torch.sum(visual_indicator_embeds * 0.0)
            input_embeds.append(input_embed)
            attention_masks.append(attention_mask)
            labels.append(label)

        if self.training:  # padding to self.config.multimodal_max_length for increased training speed
            padding_size = max(0, self.config.multimodal_max_length - len(input_embeds[0]))
            input_embeds[0] = torch.nn.ConstantPad2d((0, 0, 0, padding_size), 0.0)(input_embeds[0])
            attention_masks[0] = torch.nn.ConstantPad1d((0, padding_size), False)(attention_masks[0])
            labels[0] = torch.nn.ConstantPad1d((0, padding_size), IGNORE_ID)(labels[0])
        batch_input_embeds = torch.nn.utils.rnn.pad_sequence(input_embeds, batch_first=True, padding_value=0.0)[:,
                             :self.config.multimodal_max_length, :]
        batch_attention_mask = torch.nn.utils.rnn.pad_sequence(attention_masks, batch_first=True, padding_value=False)[
                               :,
                               :self.config.multimodal_max_length]
        batch_labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_ID)[:,
                       :self.config.multimodal_max_length]

        return visual_input_ids, batch_input_embeds, batch_labels, batch_attention_mask

    def preprocess_inputs(
        self,
        text_or_conversations: Union[List[Dict], str],
        images: Optional[List[PIL.Image.Image]],
        max_partition=9,
        generation_preface='',
        return_labels=False,
        propagate_exception=True
    ):
        # convert text to conversations
        if isinstance(text_or_conversations, str):
            conversations = [{
                "from": "human",
                "value": text_or_conversations
            }]
        elif isinstance(text_or_conversations, list):
            conversations = text_or_conversations
        else:
            raise ValueError(f'Invalid type of `text_or_conversations`, expected `List[Dict]` or `str`,'
                             f' but got {type(text_or_conversations)}')

        # format conversations
        prompt, raw_input_ids, raw_labels = self.get_conversation_formatter().format(
            conversations, generation_preface=generation_preface)

        # place image placeholders
        input_ids = []
        labels = []
        pixel_values = []
        invalidate_label = False
        image_token_indices = [i for i, v in enumerate(raw_input_ids) if v == IMAGE_TOKEN_ID]
        last_image_token_index = -1
        for i in range(len(image_token_indices)):
            head = 0 if i == 0 else image_token_indices[i - 1] + 1
            tail = image_token_indices[i]
            last_image_token_index = tail
            input_ids.extend(raw_input_ids[head:tail])
            labels.extend(raw_labels[head:tail])
            try:
                image = images[i]
                raw_pixel_values, image_placeholders = self.visual_tokenizer.preprocess_image(
                    image, max_partition=max_partition)
            except Exception as e:
                if propagate_exception:
                    raise e
                logging.exception(e)
                invalidate_label = True
                raw_pixel_values, image_placeholders = self.visual_tokenizer.mock_input()
            input_ids.extend(image_placeholders)
            labels.extend([IGNORE_ID] * len(image_placeholders))
            pixel_values.append(raw_pixel_values)
        input_ids.extend(raw_input_ids[last_image_token_index + 1:])
        labels.extend(raw_labels[last_image_token_index + 1:])

        # return tensors
        input_ids = torch.tensor(input_ids, dtype=torch.long)
        labels = torch.tensor([IGNORE_ID] * len(labels) if invalidate_label else labels, dtype=torch.long)
        pixel_values = torch.cat(pixel_values, dim=0) if len(pixel_values) > 0 else None

        if return_labels:
            return prompt, input_ids, pixel_values, labels
        else:
            return prompt, input_ids, pixel_values

    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        is_main_process: bool = True,
        state_dict: Optional[dict] = None,
        save_function: Callable = torch.save,
        push_to_hub: bool = False,
        max_shard_size: Union[int, str] = "5GB",
        safe_serialization: bool = True,
        variant: Optional[str] = None,
        token: Optional[Union[str, bool]] = None,
        save_peft_format: bool = True,
        **kwargs
    ):
        super().save_pretrained(save_directory,
                                is_main_process=is_main_process,
                                state_dict=state_dict,
                                save_function=save_function,
                                safe_serialization=safe_serialization)
        self.get_text_tokenizer().save_pretrained(save_directory)
        self.get_visual_tokenizer().get_image_processor().save_pretrained(save_directory)

        # uncomment the following will additionally save a separate visual tokenizer
        # visual_tokenizer_directory = os.path.join(save_directory, 'visual_tokenizer')
        # self.get_visual_tokenizer().save_pretrained(visual_tokenizer_directory,
        #                                             is_main_process=is_main_process,
        #                                             state_dict=None,
        #                                             save_function=save_function,
        #                                             safe_serialization=safe_serialization)
        # self.get_visual_tokenizer().get_image_processor().save_pretrained(visual_tokenizer_directory)

    def _get_hybrid_cache_for_llm(self, max_batch_size: int, max_cache_len: int):
        cache_cls = HybridCache
        llm = self.get_llm()

        need_new_cache = (
            not hasattr(llm, "_cache")
            or (not isinstance(llm._cache, cache_cls))
            or llm._cache.max_batch_size != max_batch_size
            or llm._cache.max_cache_len < max_cache_len
        )

        if need_new_cache:
            if hasattr(llm.config, "_pre_quantization_dtype"):
                cache_dtype = llm.config._pre_quantization_dtype
            else:
                cache_dtype = llm.dtype
            llm._cache = cache_cls(
                config=llm.config,
                max_batch_size=max_batch_size,
                max_cache_len=max_cache_len,
                device=llm.device,
                dtype=cache_dtype,
            )
        else:
            llm._cache.reset()
        return llm._cache

    # TODO: support batch generation
    def generate(
        self,
        inputs: Optional[torch.Tensor] = None,
        **kwargs
    ) -> Union[GenerateOutput, torch.LongTensor]:
        assert inputs.shape[0] == 1, 'Currently, only support `batch_size=1`'
        _, inputs_embeds, labels, attention_mask = self.merge_multimodal(
            text_input_ids=inputs,
            text_attention_masks=kwargs.pop('attention_mask'),
            text_labels=None,
            pixel_values=kwargs.pop('pixel_values')
        )
        if getattr(self.generation_config, 'cache_implementation') == 'hybrid':  # mainly for Gemma2
            kwargs['past_key_values'] = self._get_hybrid_cache_for_llm(
                getattr(kwargs, "num_beams", 1), kwargs['max_new_tokens'] + inputs_embeds.shape[-2])
            self.get_llm()._supports_cache_class = True
            kwargs['cache_implementation'] = None

        return self.llm.generate(inputs=None, inputs_embeds=inputs_embeds, attention_mask=attention_mask, **kwargs)


AutoConfig.register("ovis", OvisConfig)
AutoModelForCausalLM.register(OvisConfig, Ovis)