File size: 9,335 Bytes
b4942cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import json
import os
import pathlib

import deepspeed
import torch
import transformers
from deepspeed import get_accelerator
from torch.utils.data import ConcatDataset
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModel, AutoConfig
from transformers import Trainer
from transformers.integrations.deepspeed import unset_hf_deepspeed_config, set_hf_deepspeed_config

from callback import TuneTauCallback, MonitorCallback
from ovis.model.configuration_ovis import OvisConfig
from ovis.model.modeling_ovis import Ovis
from ovis.train.arguments import ModelArguments, TrainingArguments
from ovis.train.dataset.caption_dataset import CaptionDataset
from ovis.train.dataset.conversation_dataset import ConversationDataset
from ovis.train.dataset.multimodal_dataset import DataCollatorForMultimodalDataset
from ovis.util.constants import BEGIN_LINE, END_LINE
from ovis.util.utils import smart_unit, rank0_print


def train():
    # parse args
    parser = transformers.HfArgumentParser(
        (ModelArguments, TrainingArguments))
    model_args, training_args = parser.parse_args_into_dataclasses()

    # save args to checkpoint dir
    with training_args.main_process_first(local=False):
        if training_args.process_index == 0:
            def args2dict(args):
                return {k: str(v) for k, v in args.__dict__.items()}

            args_log = json.dumps(dict(
                model_args=args2dict(model_args),
                training_args=args2dict(training_args)
            ), ensure_ascii=False, indent=2)
            print(args_log)
            os.makedirs(training_args.output_dir, exist_ok=True)
            with open(os.path.join(training_args.output_dir, 'model_training_args.json'), 'w',
                      encoding='utf-8') as f:
                f.write(args_log + '\n')

    # construct or load ovis model
    if not training_args.ovis_pretrained_path:  # construct model (S1)
        # 1. construct ovis config
        ovis_config = OvisConfig(
            multimodal_max_length=model_args.multimodal_max_length,
            conversation_formatter_class=model_args.conversation_formatter_class,
            llm_attn_implementation=model_args.llm_attn_implementation
        )
        # 2. load pretrained llm and text tokenizer
        attn_kwargs = dict()
        if model_args.llm_attn_implementation:
            attn_kwargs['attn_implementation'] = model_args.llm_attn_implementation
        llm = AutoModelForCausalLM.from_pretrained(model_args.llm_name_or_path, **attn_kwargs)
        text_tokenizer = AutoTokenizer.from_pretrained(model_args.llm_name_or_path)
        if text_tokenizer.pad_token_id is None and model_args.pad_token_id is not None:
            text_tokenizer.pad_token_id = model_args.pad_token_id
        # 3. construct visual tokenizer
        # deepspeed zero.Init with bfloat16 fail for visual_tokenizer, so temporarily disable zero.Init here
        unset_hf_deepspeed_config()
        if training_args.visual_tokenizer_pretrained_path is not None:
            visual_tokenizer = AutoModel.from_pretrained(
                training_args.visual_tokenizer_pretrained_path,
                image_processor_name_or_path=training_args.visual_tokenizer_pretrained_path
            )
        else:
            visual_tokenizer_config = AutoConfig.for_model(
                model_type=model_args.visual_tokenizer_type + "_visual_tokenizer",
                vocab_size=model_args.visual_vocab_size,
                tokenize_function=model_args.visual_tokenize_function,
                tau=model_args.visual_tau,
                depths=model_args.visual_depths,
                drop_cls_token=model_args.visual_drop_cls_token,
                hidden_stride=model_args.visual_hidden_stride,
            )
            visual_tokenizer = AutoModel.from_config(visual_tokenizer_config, train_from_scratch=True)
        visual_tokenizer = visual_tokenizer.to(
            device=torch.device(get_accelerator().device_name(os.getenv("LOCAL_RANK"))))
        if getattr(training_args, 'hf_deepspeed_config', None) is not None:
            set_hf_deepspeed_config(training_args.hf_deepspeed_config)
        # 4. construct ovis model
        model = Ovis(ovis_config, llm=llm, text_tokenizer=text_tokenizer, visual_tokenizer=visual_tokenizer,
                     train_from_scratch=True)
    else:  # load pretrained ovis model
        model, loading_info = Ovis.from_pretrained(training_args.ovis_pretrained_path,
                                                   multimodal_max_length=model_args.multimodal_max_length,
                                                   output_loading_info=True)
        rank0_print(BEGIN_LINE)
        rank0_print(f'Loading info of Ovis:\n{loading_info}')
        rank0_print(END_LINE)
        training_args.vte_re_init = False

    model.get_llm().config.use_cache = False
    model.config.use_cache = False
    text_tokenizer = model.get_text_tokenizer()

    rank0_print(BEGIN_LINE)
    rank0_print(f'model.config:\n{model.config}')
    rank0_print(END_LINE)

    # maybe re-init vte
    if training_args.vte_re_init:
        with deepspeed.zero.GatheredParameters([model.get_wte().weight]):
            mean = model.get_wte().weight.mean().item()
            std = model.get_wte().weight.std().item()
        rank0_print(f'Statistics of embedding table of LLM: {mean=}, {std=}')
        model.re_init_vte(mean, std)

    # select train modules
    model.requires_grad_(False)
    for module in training_args.train_modules.split('|'):
        if module == 'all':
            model.requires_grad_(True)
        elif module == 'llm':
            model.get_llm().requires_grad_(True)
        elif module == 'visual_tokenizer':
            model.get_visual_tokenizer().requires_grad_(True)
        elif module == 'visual_tokenizer.backbone':
            model.get_visual_tokenizer().get_backbone().requires_grad_(True)
        elif module.startswith('visual_tokenizer.backbone.layer.'):
            layer_index = int(module[len('visual_tokenizer.backbone.layer.'):])
            layer = model.get_visual_tokenizer().get_backbone_layer(layer_index)
            layer.requires_grad_(True)
        elif module == 'visual_tokenizer.head':
            model.get_visual_tokenizer().get_head().requires_grad_(True)
        elif module == 'vte':
            model.get_vte().requires_grad_(True)
        else:
            raise ValueError(f'Invalid train module name: {module}')

    rank0_print(BEGIN_LINE)
    rank0_print('Parameters to train:')
    for name, param in model.named_parameters():
        if param.requires_grad:
            rank0_print(name)
    rank0_print(f'LLM\'s attn implementation: {model.get_llm().config._attn_implementation}')
    rank0_print(END_LINE)

    # construct data module
    datasets = []
    dataset_info_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),
                                     f'dataset/{training_args.dataset_info}.json')
    with open(dataset_info_path, 'r', encoding='utf-8') as f:
        dataset_info = json.load(f)
    for name in training_args.dataset_names.split('|'):
        info = dataset_info[name]
        data_format = info['data_format']
        if data_format == 'caption':
            dataset = CaptionDataset(name, info, model, training_args)
        elif data_format == 'conversation':
            dataset = ConversationDataset(name, info, model, training_args)
        else:
            raise ValueError(f'Invalid data format `{data_format}` for dataset `{name}`')
        datasets.append(dataset)
    data_module = dict(
        train_dataset=ConcatDataset(datasets),
        data_collator=DataCollatorForMultimodalDataset(text_tokenizer)
    )

    # train
    train_callbacks = [MonitorCallback]
    if model_args.visual_tokenize_function == 'gumbel_argmax':
        train_callbacks.append(TuneTauCallback)
    trainer = Trainer(
        model=model,
        args=training_args,
        callbacks=train_callbacks,
        **data_module
    )
    rank0_print(BEGIN_LINE)
    rank0_print('Dataset sample tensor:')
    rank0_print(data_module['train_dataset'][0])
    rank0_print(END_LINE)
    rank0_print(BEGIN_LINE)
    rank0_print('Dataset sample input_ids decoding:')
    rank0_print(text_tokenizer.decode([x for x in data_module['train_dataset'][0]['input_ids'] if x >= 0]))
    rank0_print(END_LINE)
    rank0_print(BEGIN_LINE)
    rank0_print('Dataset sample labels decoding:')
    rank0_print(text_tokenizer.decode([x for x in data_module['train_dataset'][0]['labels'] if x >= 0]))
    rank0_print(END_LINE)
    rank0_print(BEGIN_LINE)
    rank0_print(f'#param of model: {smart_unit(model.num_parameters())}')
    rank0_print(f'#param of llm: {smart_unit(model.get_llm().num_parameters())}')
    rank0_print(f'#param of visual_tokenizer: {smart_unit(model.get_visual_tokenizer().num_parameters())}')
    rank0_print(f'#param of vte: {smart_unit(model.get_vte().weight.numel())}')
    rank0_print(END_LINE)
    if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
        trainer.train(resume_from_checkpoint=True)
    else:
        trainer.train()
    trainer.save_state()

    # save model
    model.get_llm().config.use_cache = True
    model.config.use_cache = True
    trainer.save_model()


if __name__ == '__main__':
    train()