Spaces:
Sleeping
Sleeping
File size: 15,142 Bytes
17b531f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
//
// This work is made available under the Nvidia Source Code License-NC.
// To view a copy of this license, visit
// https://nvlabs.github.io/stylegan2/license.html
#define EIGEN_USE_GPU
#define __CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/shape_inference.h"
#include <stdio.h>
using namespace tensorflow;
using namespace tensorflow::shape_inference;
//------------------------------------------------------------------------
// Helpers.
#define OP_CHECK_CUDA_ERROR(CTX, CUDA_CALL) do { cudaError_t err = CUDA_CALL; OP_REQUIRES(CTX, err == cudaSuccess, errors::Internal(cudaGetErrorName(err))); } while (false)
static __host__ __device__ __forceinline__ int floorDiv(int a, int b)
{
int c = a / b;
if (c * b > a)
c--;
return c;
}
//------------------------------------------------------------------------
// CUDA kernel params.
template <class T>
struct UpFirDn2DKernelParams
{
const T* x; // [majorDim, inH, inW, minorDim]
const T* k; // [kernelH, kernelW]
T* y; // [majorDim, outH, outW, minorDim]
int upx;
int upy;
int downx;
int downy;
int padx0;
int padx1;
int pady0;
int pady1;
int majorDim;
int inH;
int inW;
int minorDim;
int kernelH;
int kernelW;
int outH;
int outW;
int loopMajor;
int loopX;
};
//------------------------------------------------------------------------
// General CUDA implementation for large filter kernels.
template <class T>
static __global__ void UpFirDn2DKernel_large(const UpFirDn2DKernelParams<T> p)
{
// Calculate thread index.
int minorIdx = blockIdx.x * blockDim.x + threadIdx.x;
int outY = minorIdx / p.minorDim;
minorIdx -= outY * p.minorDim;
int outXBase = blockIdx.y * p.loopX * blockDim.y + threadIdx.y;
int majorIdxBase = blockIdx.z * p.loopMajor;
if (outXBase >= p.outW || outY >= p.outH || majorIdxBase >= p.majorDim)
return;
// Setup Y receptive field.
int midY = outY * p.downy + p.upy - 1 - p.pady0;
int inY = min(max(floorDiv(midY, p.upy), 0), p.inH);
int h = min(max(floorDiv(midY + p.kernelH, p.upy), 0), p.inH) - inY;
int kernelY = midY + p.kernelH - (inY + 1) * p.upy;
// Loop over majorDim and outX.
for (int loopMajor = 0, majorIdx = majorIdxBase; loopMajor < p.loopMajor && majorIdx < p.majorDim; loopMajor++, majorIdx++)
for (int loopX = 0, outX = outXBase; loopX < p.loopX && outX < p.outW; loopX++, outX += blockDim.y)
{
// Setup X receptive field.
int midX = outX * p.downx + p.upx - 1 - p.padx0;
int inX = min(max(floorDiv(midX, p.upx), 0), p.inW);
int w = min(max(floorDiv(midX + p.kernelW, p.upx), 0), p.inW) - inX;
int kernelX = midX + p.kernelW - (inX + 1) * p.upx;
// Initialize pointers.
const T* xp = &p.x[((majorIdx * p.inH + inY) * p.inW + inX) * p.minorDim + minorIdx];
const T* kp = &p.k[kernelY * p.kernelW + kernelX];
int xpx = p.minorDim;
int kpx = -p.upx;
int xpy = p.inW * p.minorDim;
int kpy = -p.upy * p.kernelW;
// Inner loop.
float v = 0.0f;
for (int y = 0; y < h; y++)
{
for (int x = 0; x < w; x++)
{
v += (float)(*xp) * (float)(*kp);
xp += xpx;
kp += kpx;
}
xp += xpy - w * xpx;
kp += kpy - w * kpx;
}
// Store result.
p.y[((majorIdx * p.outH + outY) * p.outW + outX) * p.minorDim + minorIdx] = (T)v;
}
}
//------------------------------------------------------------------------
// Specialized CUDA implementation for small filter kernels.
template <class T, int upx, int upy, int downx, int downy, int kernelW, int kernelH, int tileOutW, int tileOutH>
static __global__ void UpFirDn2DKernel_small(const UpFirDn2DKernelParams<T> p)
{
//assert(kernelW % upx == 0);
//assert(kernelH % upy == 0);
const int tileInW = ((tileOutW - 1) * downx + kernelW - 1) / upx + 1;
const int tileInH = ((tileOutH - 1) * downy + kernelH - 1) / upy + 1;
__shared__ volatile float sk[kernelH][kernelW];
__shared__ volatile float sx[tileInH][tileInW];
// Calculate tile index.
int minorIdx = blockIdx.x;
int tileOutY = minorIdx / p.minorDim;
minorIdx -= tileOutY * p.minorDim;
tileOutY *= tileOutH;
int tileOutXBase = blockIdx.y * p.loopX * tileOutW;
int majorIdxBase = blockIdx.z * p.loopMajor;
if (tileOutXBase >= p.outW | tileOutY >= p.outH | majorIdxBase >= p.majorDim)
return;
// Load filter kernel (flipped).
for (int tapIdx = threadIdx.x; tapIdx < kernelH * kernelW; tapIdx += blockDim.x)
{
int ky = tapIdx / kernelW;
int kx = tapIdx - ky * kernelW;
float v = 0.0f;
if (kx < p.kernelW & ky < p.kernelH)
v = (float)p.k[(p.kernelH - 1 - ky) * p.kernelW + (p.kernelW - 1 - kx)];
sk[ky][kx] = v;
}
// Loop over majorDim and outX.
for (int loopMajor = 0, majorIdx = majorIdxBase; loopMajor < p.loopMajor & majorIdx < p.majorDim; loopMajor++, majorIdx++)
for (int loopX = 0, tileOutX = tileOutXBase; loopX < p.loopX & tileOutX < p.outW; loopX++, tileOutX += tileOutW)
{
// Load input pixels.
int tileMidX = tileOutX * downx + upx - 1 - p.padx0;
int tileMidY = tileOutY * downy + upy - 1 - p.pady0;
int tileInX = floorDiv(tileMidX, upx);
int tileInY = floorDiv(tileMidY, upy);
__syncthreads();
for (int inIdx = threadIdx.x; inIdx < tileInH * tileInW; inIdx += blockDim.x)
{
int relInY = inIdx / tileInW;
int relInX = inIdx - relInY * tileInW;
int inX = relInX + tileInX;
int inY = relInY + tileInY;
float v = 0.0f;
if (inX >= 0 & inY >= 0 & inX < p.inW & inY < p.inH)
v = (float)p.x[((majorIdx * p.inH + inY) * p.inW + inX) * p.minorDim + minorIdx];
sx[relInY][relInX] = v;
}
// Loop over output pixels.
__syncthreads();
for (int outIdx = threadIdx.x; outIdx < tileOutH * tileOutW; outIdx += blockDim.x)
{
int relOutY = outIdx / tileOutW;
int relOutX = outIdx - relOutY * tileOutW;
int outX = relOutX + tileOutX;
int outY = relOutY + tileOutY;
// Setup receptive field.
int midX = tileMidX + relOutX * downx;
int midY = tileMidY + relOutY * downy;
int inX = floorDiv(midX, upx);
int inY = floorDiv(midY, upy);
int relInX = inX - tileInX;
int relInY = inY - tileInY;
int kernelX = (inX + 1) * upx - midX - 1; // flipped
int kernelY = (inY + 1) * upy - midY - 1; // flipped
// Inner loop.
float v = 0.0f;
#pragma unroll
for (int y = 0; y < kernelH / upy; y++)
#pragma unroll
for (int x = 0; x < kernelW / upx; x++)
v += sx[relInY + y][relInX + x] * sk[kernelY + y * upy][kernelX + x * upx];
// Store result.
if (outX < p.outW & outY < p.outH)
p.y[((majorIdx * p.outH + outY) * p.outW + outX) * p.minorDim + minorIdx] = (T)v;
}
}
}
//------------------------------------------------------------------------
// TensorFlow op.
template <class T>
struct UpFirDn2DOp : public OpKernel
{
UpFirDn2DKernelParams<T> m_attribs;
UpFirDn2DOp(OpKernelConstruction* ctx) : OpKernel(ctx)
{
memset(&m_attribs, 0, sizeof(m_attribs));
OP_REQUIRES_OK(ctx, ctx->GetAttr("upx", &m_attribs.upx));
OP_REQUIRES_OK(ctx, ctx->GetAttr("upy", &m_attribs.upy));
OP_REQUIRES_OK(ctx, ctx->GetAttr("downx", &m_attribs.downx));
OP_REQUIRES_OK(ctx, ctx->GetAttr("downy", &m_attribs.downy));
OP_REQUIRES_OK(ctx, ctx->GetAttr("padx0", &m_attribs.padx0));
OP_REQUIRES_OK(ctx, ctx->GetAttr("padx1", &m_attribs.padx1));
OP_REQUIRES_OK(ctx, ctx->GetAttr("pady0", &m_attribs.pady0));
OP_REQUIRES_OK(ctx, ctx->GetAttr("pady1", &m_attribs.pady1));
OP_REQUIRES(ctx, m_attribs.upx >= 1 && m_attribs.upy >= 1, errors::InvalidArgument("upx and upy must be at least 1x1"));
OP_REQUIRES(ctx, m_attribs.downx >= 1 && m_attribs.downy >= 1, errors::InvalidArgument("downx and downy must be at least 1x1"));
}
void Compute(OpKernelContext* ctx)
{
UpFirDn2DKernelParams<T> p = m_attribs;
cudaStream_t stream = ctx->eigen_device<Eigen::GpuDevice>().stream();
const Tensor& x = ctx->input(0); // [majorDim, inH, inW, minorDim]
const Tensor& k = ctx->input(1); // [kernelH, kernelW]
p.x = x.flat<T>().data();
p.k = k.flat<T>().data();
OP_REQUIRES(ctx, x.dims() == 4, errors::InvalidArgument("input must have rank 4"));
OP_REQUIRES(ctx, k.dims() == 2, errors::InvalidArgument("kernel must have rank 2"));
OP_REQUIRES(ctx, x.NumElements() <= kint32max, errors::InvalidArgument("input too large"));
OP_REQUIRES(ctx, k.NumElements() <= kint32max, errors::InvalidArgument("kernel too large"));
p.majorDim = (int)x.dim_size(0);
p.inH = (int)x.dim_size(1);
p.inW = (int)x.dim_size(2);
p.minorDim = (int)x.dim_size(3);
p.kernelH = (int)k.dim_size(0);
p.kernelW = (int)k.dim_size(1);
OP_REQUIRES(ctx, p.kernelW >= 1 && p.kernelH >= 1, errors::InvalidArgument("kernel must be at least 1x1"));
p.outW = (p.inW * p.upx + p.padx0 + p.padx1 - p.kernelW + p.downx) / p.downx;
p.outH = (p.inH * p.upy + p.pady0 + p.pady1 - p.kernelH + p.downy) / p.downy;
OP_REQUIRES(ctx, p.outW >= 1 && p.outH >= 1, errors::InvalidArgument("output must be at least 1x1"));
Tensor* y = NULL; // [majorDim, outH, outW, minorDim]
TensorShape ys;
ys.AddDim(p.majorDim);
ys.AddDim(p.outH);
ys.AddDim(p.outW);
ys.AddDim(p.minorDim);
OP_REQUIRES_OK(ctx, ctx->allocate_output(0, ys, &y));
p.y = y->flat<T>().data();
OP_REQUIRES(ctx, y->NumElements() <= kint32max, errors::InvalidArgument("output too large"));
// Choose CUDA kernel to use.
void* cudaKernel = (void*)UpFirDn2DKernel_large<T>;
int tileOutW = -1;
int tileOutH = -1;
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 7 && p.kernelH <= 7) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 7,7, 64,16>; tileOutW = 64; tileOutH = 16; }
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 6 && p.kernelH <= 6) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 6,6, 64,16>; tileOutW = 64; tileOutH = 16; }
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 5 && p.kernelH <= 5) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 5,5, 64,16>; tileOutW = 64; tileOutH = 16; }
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 4 && p.kernelH <= 4) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 4,4, 64,16>; tileOutW = 64; tileOutH = 16; }
if (p.upx == 1 && p.upy == 1 && p.downx == 1 && p.downy == 1 && p.kernelW <= 3 && p.kernelH <= 3) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 1,1, 3,3, 64,16>; tileOutW = 64; tileOutH = 16; }
if (p.upx == 2 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 8 && p.kernelH <= 8) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,2, 1,1, 8,8, 64,16>; tileOutW = 64; tileOutH = 16; }
if (p.upx == 2 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 6 && p.kernelH <= 6) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,2, 1,1, 6,6, 64,16>; tileOutW = 64; tileOutH = 16; }
if (p.upx == 2 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 4 && p.kernelH <= 4) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,2, 1,1, 4,4, 64,16>; tileOutW = 64; tileOutH = 16; }
if (p.upx == 2 && p.upy == 2 && p.downx == 1 && p.downy == 1 && p.kernelW <= 2 && p.kernelH <= 2) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 2,2, 1,1, 2,2, 64,16>; tileOutW = 64; tileOutH = 16; }
if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 2 && p.kernelW <= 8 && p.kernelH <= 8) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,2, 8,8, 32,8>; tileOutW = 32; tileOutH = 8; }
if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 2 && p.kernelW <= 6 && p.kernelH <= 6) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,2, 6,6, 32,8>; tileOutW = 32; tileOutH = 8; }
if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 2 && p.kernelW <= 4 && p.kernelH <= 4) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,2, 4,4, 32,8>; tileOutW = 32; tileOutH = 8; }
if (p.upx == 1 && p.upy == 1 && p.downx == 2 && p.downy == 2 && p.kernelW <= 2 && p.kernelH <= 2) { cudaKernel = (void*)UpFirDn2DKernel_small<T, 1,1, 2,2, 2,2, 32,8>; tileOutW = 32; tileOutH = 8; }
// Choose launch params.
dim3 blockSize;
dim3 gridSize;
if (tileOutW > 0 && tileOutH > 0) // small
{
p.loopMajor = (p.majorDim - 1) / 16384 + 1;
p.loopX = 1;
blockSize = dim3(32 * 8, 1, 1);
gridSize = dim3(((p.outH - 1) / tileOutH + 1) * p.minorDim, (p.outW - 1) / (p.loopX * tileOutW) + 1, (p.majorDim - 1) / p.loopMajor + 1);
}
else // large
{
p.loopMajor = (p.majorDim - 1) / 16384 + 1;
p.loopX = 4;
blockSize = dim3(4, 32, 1);
gridSize = dim3((p.outH * p.minorDim - 1) / blockSize.x + 1, (p.outW - 1) / (p.loopX * blockSize.y) + 1, (p.majorDim - 1) / p.loopMajor + 1);
}
// Launch CUDA kernel.
void* args[] = {&p};
OP_CHECK_CUDA_ERROR(ctx, cudaLaunchKernel(cudaKernel, gridSize, blockSize, args, 0, stream));
}
};
REGISTER_OP("UpFirDn2D")
.Input ("x: T")
.Input ("k: T")
.Output ("y: T")
.Attr ("T: {float, half}")
.Attr ("upx: int = 1")
.Attr ("upy: int = 1")
.Attr ("downx: int = 1")
.Attr ("downy: int = 1")
.Attr ("padx0: int = 0")
.Attr ("padx1: int = 0")
.Attr ("pady0: int = 0")
.Attr ("pady1: int = 0");
REGISTER_KERNEL_BUILDER(Name("UpFirDn2D").Device(DEVICE_GPU).TypeConstraint<float>("T"), UpFirDn2DOp<float>);
REGISTER_KERNEL_BUILDER(Name("UpFirDn2D").Device(DEVICE_GPU).TypeConstraint<Eigen::half>("T"), UpFirDn2DOp<Eigen::half>);
//------------------------------------------------------------------------
|