File size: 9,675 Bytes
17b531f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, visit
# https://nvlabs.github.io/stylegan2/license.html

"""Miscellaneous helper utils for Tensorflow."""

import os
import numpy as np
import tensorflow as tf

# Silence deprecation warnings from TensorFlow 1.13 onwards
import logging
logging.getLogger('tensorflow').setLevel(logging.ERROR)
import tensorflow.contrib   # requires TensorFlow 1.x!
tf.contrib = tensorflow.contrib

from typing import Any, Iterable, List, Union

TfExpression = Union[tf.Tensor, tf.Variable, tf.Operation]
"""A type that represents a valid Tensorflow expression."""

TfExpressionEx = Union[TfExpression, int, float, np.ndarray]
"""A type that can be converted to a valid Tensorflow expression."""


def run(*args, **kwargs) -> Any:
    """Run the specified ops in the default session."""
    assert_tf_initialized()
    return tf.get_default_session().run(*args, **kwargs)


def is_tf_expression(x: Any) -> bool:
    """Check whether the input is a valid Tensorflow expression, i.e., Tensorflow Tensor, Variable, or Operation."""
    return isinstance(x, (tf.Tensor, tf.Variable, tf.Operation))


def shape_to_list(shape: Iterable[tf.Dimension]) -> List[Union[int, None]]:
    """Convert a Tensorflow shape to a list of ints. Retained for backwards compatibility -- use TensorShape.as_list() in new code."""
    return [dim.value for dim in shape]


def flatten(x: TfExpressionEx) -> TfExpression:
    """Shortcut function for flattening a tensor."""
    with tf.name_scope("Flatten"):
        return tf.reshape(x, [-1])


def log2(x: TfExpressionEx) -> TfExpression:
    """Logarithm in base 2."""
    with tf.name_scope("Log2"):
        return tf.log(x) * np.float32(1.0 / np.log(2.0))


def exp2(x: TfExpressionEx) -> TfExpression:
    """Exponent in base 2."""
    with tf.name_scope("Exp2"):
        return tf.exp(x * np.float32(np.log(2.0)))


def lerp(a: TfExpressionEx, b: TfExpressionEx, t: TfExpressionEx) -> TfExpressionEx:
    """Linear interpolation."""
    with tf.name_scope("Lerp"):
        return a + (b - a) * t


def lerp_clip(a: TfExpressionEx, b: TfExpressionEx, t: TfExpressionEx) -> TfExpression:
    """Linear interpolation with clip."""
    with tf.name_scope("LerpClip"):
        return a + (b - a) * tf.clip_by_value(t, 0.0, 1.0)


def absolute_name_scope(scope: str) -> tf.name_scope:
    """Forcefully enter the specified name scope, ignoring any surrounding scopes."""
    return tf.name_scope(scope + "/")


def absolute_variable_scope(scope: str, **kwargs) -> tf.variable_scope:
    """Forcefully enter the specified variable scope, ignoring any surrounding scopes."""
    return tf.variable_scope(tf.VariableScope(name=scope, **kwargs), auxiliary_name_scope=False)


def _sanitize_tf_config(config_dict: dict = None) -> dict:
    # Defaults.
    cfg = dict()
    cfg["rnd.np_random_seed"]               = None      # Random seed for NumPy. None = keep as is.
    cfg["rnd.tf_random_seed"]               = "auto"    # Random seed for TensorFlow. 'auto' = derive from NumPy random state. None = keep as is.
    cfg["env.TF_CPP_MIN_LOG_LEVEL"]         = "1"       # 0 = Print all available debug info from TensorFlow. 1 = Print warnings and errors, but disable debug info.
    cfg["graph_options.place_pruned_graph"] = True      # False = Check that all ops are available on the designated device. True = Skip the check for ops that are not used.
    cfg["gpu_options.allow_growth"]         = True      # False = Allocate all GPU memory at the beginning. True = Allocate only as much GPU memory as needed.

    # Remove defaults for environment variables that are already set.
    for key in list(cfg):
        fields = key.split(".")
        if fields[0] == "env":
            assert len(fields) == 2
            if fields[1] in os.environ:
                del cfg[key]

    # User overrides.
    if config_dict is not None:
        cfg.update(config_dict)
    return cfg


def init_tf(config_dict: dict = None) -> None:
    """Initialize TensorFlow session using good default settings."""
    # Skip if already initialized.
    if tf.get_default_session() is not None:
        return

    # Setup config dict and random seeds.
    cfg = _sanitize_tf_config(config_dict)
    np_random_seed = cfg["rnd.np_random_seed"]
    if np_random_seed is not None:
        np.random.seed(np_random_seed)
    tf_random_seed = cfg["rnd.tf_random_seed"]
    if tf_random_seed == "auto":
        tf_random_seed = np.random.randint(1 << 31)
    if tf_random_seed is not None:
        tf.set_random_seed(tf_random_seed)

    # Setup environment variables.
    for key, value in cfg.items():
        fields = key.split(".")
        if fields[0] == "env":
            assert len(fields) == 2
            os.environ[fields[1]] = str(value)

    # Create default TensorFlow session.
    create_session(cfg, force_as_default=True)


def assert_tf_initialized():
    """Check that TensorFlow session has been initialized."""
    if tf.get_default_session() is None:
        raise RuntimeError("No default TensorFlow session found. Please call dnnlib.tflib.init_tf().")


def create_session(config_dict: dict = None, force_as_default: bool = False) -> tf.Session:
    """Create tf.Session based on config dict."""
    # Setup TensorFlow config proto.
    cfg = _sanitize_tf_config(config_dict)
    config_proto = tf.ConfigProto()
    for key, value in cfg.items():
        fields = key.split(".")
        if fields[0] not in ["rnd", "env"]:
            obj = config_proto
            for field in fields[:-1]:
                obj = getattr(obj, field)
            setattr(obj, fields[-1], value)

    # Create session.
    session = tf.Session(config=config_proto)
    if force_as_default:
        # pylint: disable=protected-access
        session._default_session = session.as_default()
        session._default_session.enforce_nesting = False
        session._default_session.__enter__()
    return session


def init_uninitialized_vars(target_vars: List[tf.Variable] = None) -> None:
    """Initialize all tf.Variables that have not already been initialized.

    Equivalent to the following, but more efficient and does not bloat the tf graph:
    tf.variables_initializer(tf.report_uninitialized_variables()).run()
    """
    assert_tf_initialized()
    if target_vars is None:
        target_vars = tf.global_variables()

    test_vars = []
    test_ops = []

    with tf.control_dependencies(None):  # ignore surrounding control_dependencies
        for var in target_vars:
            assert is_tf_expression(var)

            try:
                tf.get_default_graph().get_tensor_by_name(var.name.replace(":0", "/IsVariableInitialized:0"))
            except KeyError:
                # Op does not exist => variable may be uninitialized.
                test_vars.append(var)

                with absolute_name_scope(var.name.split(":")[0]):
                    test_ops.append(tf.is_variable_initialized(var))

    init_vars = [var for var, inited in zip(test_vars, run(test_ops)) if not inited]
    run([var.initializer for var in init_vars])


def set_vars(var_to_value_dict: dict) -> None:
    """Set the values of given tf.Variables.

    Equivalent to the following, but more efficient and does not bloat the tf graph:
    tflib.run([tf.assign(var, value) for var, value in var_to_value_dict.items()]
    """
    assert_tf_initialized()
    ops = []
    feed_dict = {}

    for var, value in var_to_value_dict.items():
        assert is_tf_expression(var)

        try:
            setter = tf.get_default_graph().get_tensor_by_name(var.name.replace(":0", "/setter:0"))  # look for existing op
        except KeyError:
            with absolute_name_scope(var.name.split(":")[0]):
                with tf.control_dependencies(None):  # ignore surrounding control_dependencies
                    setter = tf.assign(var, tf.placeholder(var.dtype, var.shape, "new_value"), name="setter")  # create new setter

        ops.append(setter)
        feed_dict[setter.op.inputs[1]] = value

    run(ops, feed_dict)


def create_var_with_large_initial_value(initial_value: np.ndarray, *args, **kwargs):
    """Create tf.Variable with large initial value without bloating the tf graph."""
    assert_tf_initialized()
    assert isinstance(initial_value, np.ndarray)
    zeros = tf.zeros(initial_value.shape, initial_value.dtype)
    var = tf.Variable(zeros, *args, **kwargs)
    set_vars({var: initial_value})
    return var


def convert_images_from_uint8(images, drange=[-1,1], nhwc_to_nchw=False):
    """Convert a minibatch of images from uint8 to float32 with configurable dynamic range.
    Can be used as an input transformation for Network.run().
    """
    images = tf.cast(images, tf.float32)
    if nhwc_to_nchw:
        images = tf.transpose(images, [0, 3, 1, 2])
    return images * ((drange[1] - drange[0]) / 255) + drange[0]


def convert_images_to_uint8(images, drange=[-1,1], nchw_to_nhwc=False, shrink=1):
    """Convert a minibatch of images from float32 to uint8 with configurable dynamic range.
    Can be used as an output transformation for Network.run().
    """
    images = tf.cast(images, tf.float32)
    if shrink > 1:
        ksize = [1, 1, shrink, shrink]
        images = tf.nn.avg_pool(images, ksize=ksize, strides=ksize, padding="VALID", data_format="NCHW")
    if nchw_to_nhwc:
        images = tf.transpose(images, [0, 2, 3, 1])
    scale = 255 / (drange[1] - drange[0])
    images = images * scale + (0.5 - drange[0] * scale)
    return tf.saturate_cast(images, tf.uint8)