// Copyright (c) 2019, NVIDIA Corporation. All rights reserved. // // This work is made available under the Nvidia Source Code License-NC. // To view a copy of this license, visit // https://nvlabs.github.io/stylegan2/license.html #define EIGEN_USE_GPU #define __CUDA_INCLUDE_COMPILER_INTERNAL_HEADERS__ #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_kernel.h" #include "tensorflow/core/framework/shape_inference.h" #include using namespace tensorflow; using namespace tensorflow::shape_inference; #define OP_CHECK_CUDA_ERROR(CTX, CUDA_CALL) do { cudaError_t err = CUDA_CALL; OP_REQUIRES(CTX, err == cudaSuccess, errors::Internal(cudaGetErrorName(err))); } while (false) //------------------------------------------------------------------------ // CUDA kernel. template struct FusedBiasActKernelParams { const T* x; // [sizeX] const T* b; // [sizeB] or NULL const T* ref; // [sizeX] or NULL T* y; // [sizeX] int grad; int axis; int act; float alpha; float gain; int sizeX; int sizeB; int stepB; int loopX; }; template static __global__ void FusedBiasActKernel(const FusedBiasActKernelParams p) { const float expRange = 80.0f; const float halfExpRange = 40.0f; const float seluScale = 1.0507009873554804934193349852946f; const float seluAlpha = 1.6732632423543772848170429916717f; // Loop over elements. int xi = blockIdx.x * p.loopX * blockDim.x + threadIdx.x; for (int loopIdx = 0; loopIdx < p.loopX && xi < p.sizeX; loopIdx++, xi += blockDim.x) { // Load and apply bias. float x = (float)p.x[xi]; if (p.b) x += (float)p.b[(xi / p.stepB) % p.sizeB]; float ref = (p.ref) ? (float)p.ref[xi] : 0.0f; if (p.gain != 0.0f & p.act != 9) ref /= p.gain; // Evaluate activation func. float y; switch (p.act * 10 + p.grad) { // linear default: case 10: y = x; break; case 11: y = x; break; case 12: y = 0.0f; break; // relu case 20: y = (x > 0.0f) ? x : 0.0f; break; case 21: y = (ref > 0.0f) ? x : 0.0f; break; case 22: y = 0.0f; break; // lrelu case 30: y = (x > 0.0f) ? x : x * p.alpha; break; case 31: y = (ref > 0.0f) ? x : x * p.alpha; break; case 32: y = 0.0f; break; // tanh case 40: { float c = expf(x); float d = 1.0f / c; y = (x < -expRange) ? -1.0f : (x > expRange) ? 1.0f : (c - d) / (c + d); } break; case 41: y = x * (1.0f - ref * ref); break; case 42: y = x * (1.0f - ref * ref) * (-2.0f * ref); break; // sigmoid case 50: y = (x < -expRange) ? 0.0f : 1.0f / (expf(-x) + 1.0f); break; case 51: y = x * ref * (1.0f - ref); break; case 52: y = x * ref * (1.0f - ref) * (1.0f - 2.0f * ref); break; // elu case 60: y = (x >= 0.0f) ? x : expf(x) - 1.0f; break; case 61: y = (ref >= 0.0f) ? x : x * (ref + 1.0f); break; case 62: y = (ref >= 0.0f) ? 0.0f : x * (ref + 1.0f); break; // selu case 70: y = (x >= 0.0f) ? seluScale * x : (seluScale * seluAlpha) * (expf(x) - 1.0f); break; case 71: y = (ref >= 0.0f) ? x * seluScale : x * (ref + seluScale * seluAlpha); break; case 72: y = (ref >= 0.0f) ? 0.0f : x * (ref + seluScale * seluAlpha); break; // softplus case 80: y = (x > expRange) ? x : logf(expf(x) + 1.0f); break; case 81: y = x * (1.0f - expf(-ref)); break; case 82: { float c = expf(-ref); y = x * c * (1.0f - c); } break; // swish case 90: y = (x < -expRange) ? 0.0f : x / (expf(-x) + 1.0f); break; case 91: { float c = expf(ref); float d = c + 1.0f; y = (ref > halfExpRange) ? x : x * c * (ref + d) / (d * d); } break; case 92: { float c = expf(ref); float d = c + 1.0f; y = (ref > halfExpRange) ? 0.0f : x * c * (ref * (2.0f - d) + 2.0f * d) / (d * d * d); } break; } // Apply gain and store. p.y[xi] = (T)(y * p.gain); } } //------------------------------------------------------------------------ // TensorFlow op. template struct FusedBiasActOp : public OpKernel { FusedBiasActKernelParams m_attribs; FusedBiasActOp(OpKernelConstruction* ctx) : OpKernel(ctx) { memset(&m_attribs, 0, sizeof(m_attribs)); OP_REQUIRES_OK(ctx, ctx->GetAttr("grad", &m_attribs.grad)); OP_REQUIRES_OK(ctx, ctx->GetAttr("axis", &m_attribs.axis)); OP_REQUIRES_OK(ctx, ctx->GetAttr("act", &m_attribs.act)); OP_REQUIRES_OK(ctx, ctx->GetAttr("alpha", &m_attribs.alpha)); OP_REQUIRES_OK(ctx, ctx->GetAttr("gain", &m_attribs.gain)); OP_REQUIRES(ctx, m_attribs.grad >= 0, errors::InvalidArgument("grad must be non-negative")); OP_REQUIRES(ctx, m_attribs.axis >= 0, errors::InvalidArgument("axis must be non-negative")); OP_REQUIRES(ctx, m_attribs.act >= 0, errors::InvalidArgument("act must be non-negative")); } void Compute(OpKernelContext* ctx) { FusedBiasActKernelParams p = m_attribs; cudaStream_t stream = ctx->eigen_device().stream(); const Tensor& x = ctx->input(0); // [...] const Tensor& b = ctx->input(1); // [sizeB] or [0] const Tensor& ref = ctx->input(2); // x.shape or [0] p.x = x.flat().data(); p.b = (b.NumElements()) ? b.flat().data() : NULL; p.ref = (ref.NumElements()) ? ref.flat().data() : NULL; OP_REQUIRES(ctx, b.NumElements() == 0 || m_attribs.axis < x.dims(), errors::InvalidArgument("axis out of bounds")); OP_REQUIRES(ctx, b.dims() == 1, errors::InvalidArgument("b must have rank 1")); OP_REQUIRES(ctx, b.NumElements() == 0 || b.NumElements() == x.dim_size(m_attribs.axis), errors::InvalidArgument("b has wrong number of elements")); OP_REQUIRES(ctx, ref.NumElements() == ((p.grad == 0) ? 0 : x.NumElements()), errors::InvalidArgument("ref has wrong number of elements")); OP_REQUIRES(ctx, x.NumElements() <= kint32max, errors::InvalidArgument("x is too large")); p.sizeX = (int)x.NumElements(); p.sizeB = (int)b.NumElements(); p.stepB = 1; for (int i = m_attribs.axis + 1; i < x.dims(); i++) p.stepB *= (int)x.dim_size(i); Tensor* y = NULL; // x.shape OP_REQUIRES_OK(ctx, ctx->allocate_output(0, x.shape(), &y)); p.y = y->flat().data(); p.loopX = 4; int blockSize = 4 * 32; int gridSize = (p.sizeX - 1) / (p.loopX * blockSize) + 1; void* args[] = {&p}; OP_CHECK_CUDA_ERROR(ctx, cudaLaunchKernel((void*)FusedBiasActKernel, gridSize, blockSize, args, 0, stream)); } }; REGISTER_OP("FusedBiasAct") .Input ("x: T") .Input ("b: T") .Input ("ref: T") .Output ("y: T") .Attr ("T: {float, half}") .Attr ("grad: int = 0") .Attr ("axis: int = 1") .Attr ("act: int = 0") .Attr ("alpha: float = 0.0") .Attr ("gain: float = 1.0"); REGISTER_KERNEL_BUILDER(Name("FusedBiasAct").Device(DEVICE_GPU).TypeConstraint("T"), FusedBiasActOp); REGISTER_KERNEL_BUILDER(Name("FusedBiasAct").Device(DEVICE_GPU).TypeConstraint("T"), FusedBiasActOp); //------------------------------------------------------------------------