Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,14 @@ from PIL import Image
|
|
7 |
# Load models
|
8 |
def load_models():
|
9 |
image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
10 |
-
storyteller = pipeline(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
return image_to_text, storyteller
|
12 |
|
13 |
# Process image to text
|
@@ -17,7 +24,7 @@ def generate_caption(image, image_to_text):
|
|
17 |
|
18 |
# Generate a narrative story using an optimized Flan-T5 prompt
|
19 |
def generate_story(text, storyteller):
|
20 |
-
prompt = f
|
21 |
story = storyteller(prompt)
|
22 |
return story[0]["generated_text"] if story else "No story generated."
|
23 |
|
|
|
7 |
# Load models
|
8 |
def load_models():
|
9 |
image_to_text = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
10 |
+
storyteller = pipeline(
|
11 |
+
"text2text-generation",
|
12 |
+
model="google/flan-t5-xl",
|
13 |
+
max_length=100,
|
14 |
+
temperature=1,
|
15 |
+
no_repeat_ngram_size=2, # Prevents repeating 2-grams
|
16 |
+
penalty_alpha=0.5 # Penalty for repeated n-grams
|
17 |
+
)
|
18 |
return image_to_text, storyteller
|
19 |
|
20 |
# Process image to text
|
|
|
24 |
|
25 |
# Generate a narrative story using an optimized Flan-T5 prompt
|
26 |
def generate_story(text, storyteller):
|
27 |
+
prompt = f'''Write a 50-word story about "{text}".'''
|
28 |
story = storyteller(prompt)
|
29 |
return story[0]["generated_text"] if story else "No story generated."
|
30 |
|