File size: 1,236 Bytes
c4bf438
63989d3
5dfd4ff
 
 
 
 
c4fdf8d
3a65207
97f8d6c
 
5dfd4ff
c4bf438
4630377
 
c4bf438
 
5dfd4ff
 
c4fdf8d
 
5dfd4ff
c4fdf8d
 
 
 
5dfd4ff
 
c4fdf8d
 
 
 
 
 
 
 
 
 
c4bf438
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import gradio as gr
from diffusers import LDMTextToImagePipeline
import torch
import numpy as np
import PIL
import cv2

print('\nDEBUG:   Version: 3')

#pipeline = LDMTextToImagePipeline.from_pretrained("fusing/latent-diffusion-text2im-large")
pipeline = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
generator = torch.manual_seed(42)

FOOTER = '<img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=milyiyo.testing-diffusers" />'

def greet(name):
    return "Hello " + name + "!!"
    
def genimage(prompt, iterations):
  image = pipeline([prompt], generator=generator, eta=0.3, guidance_scale=6.0, num_inference_steps=iterations)["sample"]
  return image[0]

  #image_processed = image.cpu().permute(0, 2, 3, 1)
  #image_processed = image_processed  * 255.
  #image_processed = image_processed.numpy().astype(np.uint8)
  #image_pil = PIL.Image.fromarray(image_processed[0])

  # save image
  #file_name = "test.png"
  #image_pil.save(file_name)
  #img = cv2.imread(file_name)
  ##cv2_imshow(img)
  #return img

iface = gr.Interface(
  fn=genimage, 
  inputs=["text", "number"], 
  outputs=gr.Image(shape=[256,256], type="pil", elem_id="output_image"))
iface.launch()