import gradio as gr from diffusers import LDMTextToImagePipeline import torch import numpy as np import PIL import cv2 import PIL.Image import random print('\nDEBUG: Version: 3') #pipeline = LDMTextToImagePipeline.from_pretrained("fusing/latent-diffusion-text2im-large") ldm_pipeline = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256") FOOTER = 'visitor badge' def greet(name): return "Hello " + name + "!!" def genimage(prompt, iterations): image = pipeline([prompt], generator=generator, eta=0.3, guidance_scale=6.0, num_inference_steps=iterations)["sample"] return image[0] #image_processed = image.cpu().permute(0, 2, 3, 1) #image_processed = image_processed * 255. #image_processed = image_processed.numpy().astype(np.uint8) #image_pil = PIL.Image.fromarray(image_processed[0]) # save image #file_name = "test.png" #image_pil.save(file_name) #img = cv2.imread(file_name) ##cv2_imshow(img) #return img def predict(prompt, steps=100): torch.cuda.empty_cache() generator = torch.manual_seed(42) images = ldm_pipeline([prompt], generator=generator, num_inference_steps=steps, eta=0.3, guidance_scale=6.0)["sample"] return images[0] iface = gr.Interface( fn=predict, inputs=["text", "number"], outputs=gr.Image(shape=[256,256], type="pil", elem_id="output_image")) iface.launch()