import gradio as gr #from diffusers import DiffusionPipeline from diffusers import LDMTextToImagePipeline import torch import numpy as np import PIL import cv2 # ----------------- #import os #print('\nDEBUG: Cloning diffusers project') #os.system('git clone https://github.com/huggingface/diffusers') #print('\nDEBUG: Pwd') #os.system('pwd') #os.system('ls -la') #print('\nDEBUG: Install dependencies of diffusers') #os.system('cd diffusers && pip install -e .') #print('\nDEBUG: Pip install from the build of diffusers') #os.system('pip install git+file:///home/user/app/diffusers') #from diffusers import DiffusionPipeline # ----------------- print('\nDEBUG: Version: 1') pipeline = LDMTextToImagePipeline.from_pretrained("fusing/latent-diffusion-text2im-large") generator = torch.manual_seed(42) FOOTER = 'visitor badge' def greet(name): return "Hello " + name + "!!" def genimage(prompt, iterations): image = pipeline([prompt], generator=generator, eta=0.3, guidance_scale=6.0, num_inference_steps=iterations) image_processed = image.cpu().permute(0, 2, 3, 1) image_processed = image_processed * 255. image_processed = image_processed.numpy().astype(np.uint8) image_pil = PIL.Image.fromarray(image_processed[0]) # save image file_name = "test.png" image_pil.save(file_name) img = cv2.imread(file_name) #cv2_imshow(img) return img iface = gr.Interface(fn=genimage, inputs=["text", "number"], outputs="image") iface.launch()